1
|
Ceylan Y, Altunoglu YC, Horuz E. HSF and Hsp Gene Families in sunflower: a comprehensive genome-wide determination survey and expression patterns under abiotic stress conditions. PROTOPLASMA 2023; 260:1473-1491. [PMID: 37154904 DOI: 10.1007/s00709-023-01862-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/24/2023] [Indexed: 05/10/2023]
Abstract
Sunflowers belong to the Asteraceae family, which comprises nutrimental and economic oilseed plants. Heat shock proteins (Hsps) are protein families vital for all organisms' growth and survival. Besides the ordinary conditions, the expression of these proteins ascends during abiotic stress factors such as high temperature, salinity, and drought. Using bioinformatics approaches, the current study identified and analyzed HSF and Hsp gene family members in the sunflower (Helianthus annuus L.) plant. HSF, sHsp, Hsp40, Hsp60, Hsp70, Hsp90, and Hsp100 domains were analyzed in the sunflower genome, and 88, 72, 192, 52, 85, 49, and 148 genes were identified, respectively. The motif structures of the proteins in the same phylogenetic tree were similar, and the α-helical form was dominant in all the protein families except for sHsp. The estimated three-dimensional structure of 28 sHsp proteins was determined as β-sheets. Considering protein-protein interactions, the Hsp60-09 protein (38 interactions) was found to be the most interacting protein. The most orthologous gene pairs (58 genes) were identified between Hsp70 genes and Arabidopsis genes. The expression analysis of selected genes was performed under high temperature, drought, and high temperature-drought combined stress conditions in two sunflower cultivars. In stress conditions, gene expressions were upregulated for almost all genes in the first half and first hours at large. The expressions of HanHSF-45 and HanHsp70-29 genes were raised in two cultivars under high temperature and high temperature-drought combined stress conditions. This study presents a blueprint for subsequent research and delivers comprehensive knowledge of this vital protein domain.
Collapse
Affiliation(s)
- Yusuf Ceylan
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey
- Department of Molecular Biology and Genetics, Faculty of Science, Bartın University, Bartin, Turkey
| | - Yasemin Celik Altunoglu
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey.
| | - Erdoğan Horuz
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey
| |
Collapse
|
2
|
Huang S, Zhou J, Gao L, Tang Y. Plant miR397 and its functions. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:361-370. [PMID: 33333000 DOI: 10.1071/fp20342] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
MicroRNAs (miRNAs) are noncoding, small RNAs of 20-24 nucleotides (nt) and function critically at the post-transcriptional level to regulate gene expression through cleaving mRNA targets or interfering with translation of the target mRNAs. They are broadly involved in many biological processes in plants. The miR397 family in plants contains several conserved members either in 21-nt or in 22-nt that mainly target the laccase (LAC) genes functioning in lignin synthesis and are involved in the development of plants under various conditions. Recent findings showed that miR397b in Arabidopsis could also target to Casein Kinase II Subunit Beta 3 (CKB3) and mediate circadian regulation and plant flowering. This review aims to summarise recent updates on miR397 and provides the available basis for understanding the functional mechanisms of miR397 in plant growth and development regulation and in response to external adverse stimulation.
Collapse
Affiliation(s)
- Shili Huang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Longhua Institute of Innovative Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, Guangdong province, China
| | - Jiajie Zhou
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Longhua Institute of Innovative Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, Guangdong province, China
| | - Lei Gao
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Longhua Institute of Innovative Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, Guangdong province, China
| | - Yulin Tang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Longhua Institute of Innovative Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, Guangdong province, China; and Corresponding author.
| |
Collapse
|
3
|
Pan X, Nichols RL, Li C, Zhang B. MicroRNA-target gene responses to root knot nematode (Meloidogyne incognita) infection in cotton (Gossypium hirsutum L.). Genomics 2018; 111:383-390. [PMID: 29481843 DOI: 10.1016/j.ygeno.2018.02.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/21/2018] [Accepted: 02/22/2018] [Indexed: 01/23/2023]
Abstract
MicroRNAs (miRNAs) are a large class of small regulatory RNA molecules, however no study has been performed to elucidate the role of miRNAs in cotton (Gossypium hirsutum) response to the root knot nematode (RKN, Meloidogyne incognita) infection. We selected 28 miRNAs and 8 miRNA target genes to investigate the miRNA-target gene response to M. incognita infection. Our results show that RKN infection significantly affected the expression of several miRNAs and their targeted genes. After 10 days of RKN infection, expression fold changes on miRNA expressions ranged from down-regulated by 33% to upregulated by 406%; meanwhile the expression levels of miRNA target genes were 45.8% to 231%. Three miRNA-target pairs, miR159-MYB, miR319-TCP4 and miR167-ARF8, showed inverse expression patterns between gene targets and their corresponded miRNAs, suggesting miRNA-mediated gene regulation in cotton roots in response to RKN infection.
Collapse
Affiliation(s)
- Xiaoping Pan
- Department of Biology, East Carolina University, Greenville, NC 27858, USA.
| | | | - Chao Li
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| |
Collapse
|
4
|
Yakovlev IA, Fossdal CG. In Silico Analysis of Small RNAs Suggest Roles for Novel and Conserved miRNAs in the Formation of Epigenetic Memory in Somatic Embryos of Norway Spruce. Front Physiol 2017; 8:674. [PMID: 28943851 PMCID: PMC5596105 DOI: 10.3389/fphys.2017.00674] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 08/23/2017] [Indexed: 12/27/2022] Open
Abstract
Epigenetic memory in Norway spruce affects the timing of bud burst and bud set, vitally important adaptive traits for this long-lived forest species. Epigenetic memory is established in response to the temperature conditions during embryogenesis. Somatic embryogenesis at different epitype inducing (EpI) temperatures closely mimics the natural processes of epigenetic memory formation in seeds, giving rise to epigenetically different clonal plants in a reproducible and predictable manner, with respect to altered bud phenology. MicroRNAs (miRNAs) and other small non-coding RNAs (sRNAs) play an essential role in the regulation of plant gene expression and may affect this epigenetic mechanism. We used NGS sequencing and computational in silico methods to identify and profile conserved and novel miRNAs among small RNAs in embryogenic tissues of Norway spruce at three EpI temperatures (18, 23 and 28°C). We detected three predominant classes of sRNAs related to a length of 24 nt, followed by a 21–22 nt class and a third 31 nt class of sRNAs. More than 2100 different miRNAs within the prevailing length 21–22 nt were identified. Profiling these putative miRNAs allowed identification of 1053 highly expressed miRNAs, including 523 conserved and 530 novels. 654 of these miRNAs were found to be differentially expressed (DEM) depending on EpI temperature. For most DEMs, we defined their putative mRNA targets. The targets represented mostly by transcripts of multiple-repeats proteins, like TIR, NBS-LRR, PPR and TPR repeat, Clathrin/VPS proteins, Myb-like, AP2, etc. Notably, 124 DE miRNAs targeted 203 differentially expressed epigenetic regulators. Developing Norway spruce embryos possess a more complex sRNA structure than that reported for somatic tissues. A variety of the predicted miRNAs showed distinct EpI temperature dependent expression patterns. These putative EpI miRNAs target spruce genes with a wide range of functions, including genes known to be involved in epigenetic regulation, which in turn could provide a feedback process leading to the formation of epigenetic marks. We suggest that TIR, NBS and LRR domain containing proteins could fulfill more general functions for signal transduction from external environmental stimuli and conversion them into molecular response. Fine-tuning of the miRNA production likely participates in both developmental regulation and epigenetic memory formation in Norway spruce.
Collapse
|
5
|
MicroRNA expression profiles during cotton (Gossypium hirsutum L) fiber early development. Sci Rep 2017; 7:44454. [PMID: 28327647 PMCID: PMC5361117 DOI: 10.1038/srep44454] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 02/08/2017] [Indexed: 12/24/2022] Open
Abstract
The role of microRNAs (miRNAs) during cotton fiber development remains unclear. Here, a total of 54 miRNAs belonging to 39 families were selected to characterize miRNA regulatory mechanism in eight different fiber development stages in upland cotton cv BM-1. Among 54 miRNAs, 18 miRNAs were involved in cotton fiber initiation and eight miRNAs were related to fiber elongation and secondary wall biosynthesis. Additionally, 3,576 protein-coding genes were candidate target genes of these miRNAs, which are potentially involved in cotton fiber development. We also investigated the regulatory network of miRNAs and corresponding targets in fiber initiation and elongation, and secondary wall formation. Our Gene Ontology-based term classification and KEGG-based pathway enrichment analyses showed that the miRNA targets covered 220 biological processes, 67 molecular functions, 45 cellular components, and 10 KEGG pathways. Three of ten KEGG pathways were involved in lignan synthesis, cell elongation, and fatty acid biosynthesis, all of which have important roles in fiber development. Overall, our study shows the potential regulatory roles of miRNAs in cotton fiber development and the importance of miRNAs in regulating different cell types. This is helpful to design miRNA-based biotechnology for improving fiber quality and yield.
Collapse
|
6
|
Sun X, Xie Z, Zhang C, Mu Q, Wu W, Wang B, Fang J. A characterization of grapevine of GRAS domain transcription factor gene family. Funct Integr Genomics 2016; 16:347-63. [PMID: 26842940 DOI: 10.1007/s10142-016-0479-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 12/21/2015] [Accepted: 01/19/2016] [Indexed: 11/30/2022]
Abstract
GRAS domain genes are a group of important plant-specific transcription factors that have been reported to be involved in plant development. In order to know the roles of GRAS genes in grapevine, a widely cultivated fruit crop, the study on grapevine GRAS (VvGRAS) was carried out, and from which, 43 were identified from 12× assemble grapevine genomic sequences. Further, the genomic structures, synteny, phylogeny, expression profiles in different tissues of these genes, and their roles in response to stress were investigated. Among the genes, two potential target genes (VvSCL15 and VvSCL22) for VvmiR171 were experimentally verified by PPM-RACE and RLM-RACE, in that not only the cleavage sites of miR171 on the target mRNA were mapped but also the cleaved fragments and their expressing patterns were detected. Transgenic Arabidopsis plants over expression VvSCL15 showed lower tolerance to drought and salt treatments.
Collapse
Affiliation(s)
- Xin Sun
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, People's Republic of China
| | - Zhengqiang Xie
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, People's Republic of China.,Department of Agronomy and Horticulture, Jiangsu Polytechnic College of Agriculture and Forestry, Jurong, 212400, Jiangsu Province, People's Republic of China
| | - Cheng Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, People's Republic of China
| | - Qian Mu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, People's Republic of China
| | - Weimin Wu
- Institute of Horticulture, Jiangsu Academy of Agriculture Sciences, Nanjing, 210014, Jiangsu Province, People's Republic of China
| | - Baoju Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, People's Republic of China
| | - Jinggui Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, People's Republic of China.
| |
Collapse
|
7
|
Xie F, Jones DC, Wang Q, Sun R, Zhang B. Small RNA sequencing identifies miRNA roles in ovule and fibre development. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:355-69. [PMID: 25572837 DOI: 10.1111/pbi.12296] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 10/15/2014] [Accepted: 10/20/2014] [Indexed: 05/03/2023]
Abstract
MicroRNAs (miRNAs) have been found to be differentially expressed during cotton fibre development. However, which specific miRNAs and how they are involved in fibre development is unclear. Here, using deep sequencing, 65 conserved miRNA families were identified and 32 families were differentially expressed between leaf and ovule. At least 40 miRNAs were either leaf or ovule specific, whereas 62 miRNAs were shared in both leaf and ovule. qRT-PCR confirmed these miRNAs were differentially expressed during fibre early development. A total of 820 genes were potentially targeted by the identified miRNAs, whose functions are involved in a series of biological processes including fibre development, metabolism and signal transduction. Many predicted miRNA-target pairs were subsequently validated by degradome sequencing analysis. GO and KEGG analyses showed that the identified miRNAs and their targets were classified to 1027 GO terms including 568 biological processes, 324 molecular functions and 135 cellular components and were enriched to 78 KEGG pathways. At least seven unique miRNAs participate in trichome regulatory interaction network. Eleven trans-acting siRNA (tasiRNA) candidate genes were also identified in cotton. One has never been found in other plant species and two of them were derived from MYB and ARF, both of which play important roles in cotton fibre development. Sixteen genes were predicted to be tasiRNA targets, including sucrose synthase and MYB2. Together, this study discovered new miRNAs in cotton and offered evidences that miRNAs play important roles in cotton ovule/fibre development. The identification of tasiRNA genes and their targets broadens our understanding of the complicated regulatory mechanism of miRNAs in cotton.
Collapse
Affiliation(s)
- Fuliang Xie
- Department of Biology, East Carolina University, Greenville, NC, USA
| | | | | | | | | |
Collapse
|