1
|
Sanchez DL, Santana AS, Morais PIC, Peterlini E, De La Fuente G, Castellano MJ, Blanco M, Lübberstedt T. Phenotypic and genome-wide association analyses for nitrogen use efficiency related traits in maize ( Zea mays L.) exotic introgression lines. FRONTIERS IN PLANT SCIENCE 2023; 14:1270166. [PMID: 37877090 PMCID: PMC10590880 DOI: 10.3389/fpls.2023.1270166] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/18/2023] [Indexed: 10/26/2023]
Abstract
Nitrogen (N) limits crop production, yet more than half of N fertilizer inputs are lost to the environment. Developing maize hybrids with improved N use efficiency can help minimize N losses and in turn reduce adverse ecological, economical, and health consequences. This study aimed to identify single nucleotide polymorphisms (SNPs) associated with agronomic traits (plant height, grain yield, and anthesis to silking interval) under high and low N conditions. A genome-wide association study (GWAS) was conducted using 181 doubled haploid (DH) lines derived from crosses between landraces from the Germplasm Enhancement of Maize (BGEM lines) project and two inbreds, PHB47 and PHZ51. These DH lines were genotyped using 62,077 SNP markers. The same lines from the per se trials were used as parental lines for the testcross field trials. Plant height, anthesis to silking interval, and grain yield were collected from high and low N conditions in three environments for both per se and testcross trials. We used three GWAS models, namely, general linear model (GLM), mixed linear model (MLM), and Fixed and Random model Circulating Probability Unification (FarmCPU) model. We observed significant genetic variation among the DH lines and their derived testcrosses. Interestingly, some testcrosses of exotic introgression lines were superior under high and low N conditions compared to the check hybrid, PHB47/PHZ51. We detected multiple SNPs associated with agronomic traits under high and low N, some of which co-localized with gene models associated with stress response and N metabolism. The BGEM panel is, thus, a promising source of allelic diversity for genes controlling agronomic traits under different N conditions.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Michael Blanco
- Department of Agronomy, Iowa State University, Ames, IA, United States
- Department of Agriculture, Agricultural Research Service (USDA-ARS), Ames, IA, United States
| | | |
Collapse
|
2
|
GWAS and Transcriptome Analysis Reveal Key Genes Affecting Root Growth under Low Nitrogen Supply in Maize. Genes (Basel) 2022; 13:genes13091632. [PMID: 36140800 PMCID: PMC9498817 DOI: 10.3390/genes13091632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/24/2022] Open
Abstract
Nitrogen (N) is one of the most important factors affecting crop production. Root morphology exhibits a high degree of plasticity to nitrogen deficiency. However, the mechanisms underlying the root foraging response under low-N conditions remain poorly understood. In this study, we analyzed 213 maize inbred lines using hydroponic systems and regarding their natural variations in 22 root traits and 6 shoot traits under normal (2 mM nitrate) and low-N (0 mM nitrate) conditions. Substantial phenotypic variations were detected for all traits. N deficiency increased the root length and decreased the root diameter and shoot related traits. A total of 297 significant marker-trait associations were identified by a genome-wide association study involving different N levels and the N response value. A total of 51 candidate genes with amino acid variations in coding regions or differentially expressed under low nitrogen conditions were identified. Furthermore, a candidate gene ZmNAC36 was resequenced in all tested lines. A total of 38 single nucleotide polymorphisms and 12 insertions and deletions were significantly associated with lateral root length of primary root, primary root length between 0 and 0.5 mm in diameter, primary root surface area, and total length of primary root under a low-N condition. These findings help us to improve our understanding of the genetic mechanism of root plasticity to N deficiency, and the identified loci and candidate genes will be useful for the genetic improvement of maize tolerance cultivars to N deficiency.
Collapse
|
3
|
Lv Y, Ma J, Wang Y, Wang Q, Lu X, Hu H, Qian Q, Guo L, Shang L. Loci and Natural Alleles for Low-Nitrogen-Induced Growth Response Revealed by the Genome-Wide Association Study Analysis in Rice ( Oryza sativa L.). FRONTIERS IN PLANT SCIENCE 2021; 12:770736. [PMID: 34804103 PMCID: PMC8602835 DOI: 10.3389/fpls.2021.770736] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 09/30/2021] [Indexed: 05/26/2023]
Abstract
Nitrogen is essential for plant growth and yield, and it is, therefore, crucial to increase the nitrogen-use efficiency (NUE) of crop plants in fields. In this study, we measured four major low-nitrogen-induced growth response (LNGR) agronomic traits (i.e., plant height, tiller number, chlorophyll content, and leaf length) of the 225-rice-variety natural population from the Rice 3K Sequencing Project across normal nitrogen (NN) and low nitrogen (LN) environments. The LNGR phenotypic difference between NN and LN levels was used for gene analysis using a genome-wide association study (GWAS) combined with 111,205 single-nucleotide polymorphisms (SNPs) from the available sequenced data from the 3K project. We obtained a total of 56 significantly associated SNPs and 4 candidate genes for 4 LNGR traits. Some loci were located in the candidate regions, such as MYB61, OsOAT, and MOC2. To further study the role of candidate genes, we conducted haplotype analyses to identify the elite germplasms. Moreover, several other plausible candidate genes encoding LN-related or NUE proteins were worthy of mining. Our study provides novel insight into the genetic control of LNGR and further reveals some related novel haplotypes and potential genes with phenotypic variation in rice.
Collapse
Affiliation(s)
- Yang Lv
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Jie Ma
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Yueying Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Quan Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xueli Lu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Haitao Hu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Longbiao Guo
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Lianguang Shang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
4
|
Sandhu N, Sethi M, Kumar A, Dang D, Singh J, Chhuneja P. Biochemical and Genetic Approaches Improving Nitrogen Use Efficiency in Cereal Crops: A Review. FRONTIERS IN PLANT SCIENCE 2021; 12:657629. [PMID: 34149755 PMCID: PMC8213353 DOI: 10.3389/fpls.2021.657629] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 04/06/2021] [Indexed: 05/22/2023]
Abstract
Nitrogen is an essential nutrient required in large quantities for the proper growth and development of plants. Nitrogen is the most limiting macronutrient for crop production in most of the world's agricultural areas. The dynamic nature of nitrogen and its tendency to lose soil and environment systems create a unique and challenging environment for its proper management. Exploiting genetic diversity, developing nutrient efficient novel varieties with better agronomy and crop management practices combined with improved crop genetics have been significant factors behind increased crop production. In this review, we highlight the various biochemical, genetic factors and the regulatory mechanisms controlling the plant nitrogen economy necessary for reducing fertilizer cost and improving nitrogen use efficiency while maintaining an acceptable grain yield.
Collapse
|
5
|
Yu S, Ali J, Zhang C, Li Z, Zhang Q. Genomic Breeding of Green Super Rice Varieties and Their Deployment in Asia and Africa. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1427-1442. [PMID: 31915875 PMCID: PMC7214492 DOI: 10.1007/s00122-019-03516-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 12/17/2019] [Indexed: 05/22/2023]
Abstract
KEY MESSAGE The "Green Super Rice" (GSR) project aims to fundamentally transform crop production techniques and promote the development of green agriculture based on functional genomics and breeding of GSR varieties by whole-genome breeding platforms. Rice (Oryza sativa L.) is one of the leading food crops of the world, and the safe production of rice plays a central role in ensuring food security. However, the conflicts between rice production and environmental resources are becoming increasingly acute. For this reason, scientists in China have proposed the concept of Green Super Rice for promoting resource-saving and environment-friendly rice production, while still achieving a yield increase and quality improvement. GSR is becoming one of the major goals for agricultural research and crop improvement worldwide, which aims to mine and use vital genes associated with superior agronomic traits such as high yield, good quality, nutrient efficiency, and resistance against insects and stresses; establish genomic breeding platforms to breed and apply GSR; and set up resource-saving and environment-friendly cultivation management systems. GSR has been introduced into eight African and eight Asian countries and has contributed significantly to rice cultivation and food security in these countries. This article mainly describes the GSR concept and recent research progress, as well as the significant achievements in GSR breeding and its application.
Collapse
Affiliation(s)
- Sibin Yu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jauhar Ali
- International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Chaopu Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhikang Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
- College of Agronomy, Anhui Agricultural University, Hefei, China.
| | - Qifa Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
6
|
Zhang Z, Gao S, Chu C. Improvement of nutrient use efficiency in rice: current toolbox and future perspectives. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1365-1384. [PMID: 31919537 DOI: 10.1007/s00122-019-03527-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 12/24/2019] [Indexed: 05/03/2023]
Abstract
Modern agriculture relies heavily on chemical fertilizers, especially in terms of cereal production. The excess application of fertilizers not only increases production cost, but also causes severe environmental problems. As one of the major cereal crops, rice (Oryza sativa L.) provides the staple food for nearly half of population worldwide, especially in developing countries. Therefore, improving rice yield is always the priority for rice breeding. Macronutrients, especially nitrogen (N) and phosphorus (P), are two most important players for the grain yield of rice. However, with economic development and improved living standard, improving nutritional quality such as micronutrient contents in grains has become a new goal in order to solve the "hidden hunger." Micronutrients, such as iron (Fe), zinc (Zn), and selenium (Se), are critical nutritional elements for human health. Therefore, breeding the rice varieties with improved nutrient use efficiency (NUE) is thought to be one of the most feasible ways to increase both grain yield and nutritional quality with limited fertilizer input. In this review, we summarized the progresses in molecular dissection of genes for NUE by reverse genetics on macronutrients (N and P) and micronutrients (Fe, Zn, and Se), exploring natural variations for improving NUE in rice; and also, the current genetic toolbox and future perspectives for improving rice NUE are discussed.
Collapse
Affiliation(s)
- Zhihua Zhang
- School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shaopei Gao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
7
|
Genome-wide associated study identifies NAC42-activated nitrate transporter conferring high nitrogen use efficiency in rice. Nat Commun 2019; 10:5279. [PMID: 31754193 PMCID: PMC6872725 DOI: 10.1038/s41467-019-13187-1] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 10/24/2019] [Indexed: 11/17/2022] Open
Abstract
Over-application of nitrogen fertilizer in fields has had a negative impact on both environment and human health. Domesticated rice varieties with high nitrogen use efficiency (NUE) reduce fertilizer for sustainable agriculture. Here, we perform genome-wide association analysis of a diverse rice population displaying extreme nitrogen-related phenotypes over three successive years in the field, and identify an elite haplotype of nitrate transporter OsNPF6.1HapB that enhances nitrate uptake and confers high NUE by increasing yield under low nitrogen supply. OsNPF6.1HapB differs in both the protein and promoter element with natural variations, which are differentially trans-activated by OsNAC42, a NUE-related transcription factor. The rare natural allele OsNPF6.1HapB, derived from variation in wild rice and selected for enhancing both NUE and yield, has been lost in 90.3% of rice varieties due to the increased application of fertilizer. Our discovery highlights this NAC42-NPF6.1 signaling cascade as a strategy for high NUE and yield breeding in rice. Improving crop nitrogen use efficiency can facilitate sustainable production, however, the genetic mechanisms have not been fully revealed. Here, the authors discover the NAC42-NPF6.1 signaling cascade mainly derives from indica and wild rice and demonstrate the potential of using the allele for cultivar improvement.
Collapse
|
8
|
Xiong H, Guo H, Zhou C, Guo X, Xie Y, Zhao L, Gu J, Zhao S, Ding Y, Liu L. A combined association mapping and t-test analysis of SNP loci and candidate genes involving in resistance to low nitrogen traits by a wheat mutant population. PLoS One 2019; 14:e0211492. [PMID: 30699181 PMCID: PMC6353201 DOI: 10.1371/journal.pone.0211492] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 01/15/2019] [Indexed: 11/19/2022] Open
Abstract
Crop productivity is highly dependent on the application of N fertilizers, but ever-increasing N application is causing serious environmental impacts. To facilitate the development of new wheat cultivars that can thrive in low N growth conditions, key loci and genes associated with wheat responses to low N must be identified. In this GWAS and t-test study of 190 M6 mutant wheat lines (Jing 411-derived) based on genotype data from the wheat 660k SNP array, we identified a total of 221 significant SNPs associated four seedling phenotypic traits that have been implicated in resistance to low N: relative root length, relative shoot length, relative root weight, and relative shoot weight. Notably, we detected large numbers of significantly associated SNP in what appear to be genomic 'hotspots' for resistance to low N on chromosomes 2A and 6B, strongly suggesting that these regions are functionally related to the resistance phenotypes that we observed in some of the mutant lines. Moreover, the candidate genes, including genes encoding high-affinity nitrate transporter 2.1, gibberellin responsive protein, were identified for resistance to low N. This study raises plausible mechanistic hypotheses that can be evaluated in future applied or basic efforts by breeders or plant biologists seeking to develop new high-NUE wheat cultivars.
Collapse
Affiliation(s)
- Hongchun Xiong
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/National Engineering Laboratory for Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, Beijing, China
| | - Huijun Guo
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/National Engineering Laboratory for Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, Beijing, China
| | - Chunyun Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/National Engineering Laboratory for Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, Beijing, China
| | - Xiaotong Guo
- College of Agriculture, Ludong University, Yantai, China
| | - Yongdun Xie
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/National Engineering Laboratory for Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, Beijing, China
| | - Linshu Zhao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/National Engineering Laboratory for Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, Beijing, China
| | - Jiayu Gu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/National Engineering Laboratory for Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, Beijing, China
| | - Shirong Zhao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/National Engineering Laboratory for Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, Beijing, China
| | - Yuping Ding
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/National Engineering Laboratory for Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, Beijing, China
| | - Luxiang Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/National Engineering Laboratory for Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, Beijing, China
| |
Collapse
|
9
|
Anis GB, Zhang Y, Islam A, Zhang Y, Cao Y, Wu W, Cao L, Cheng S. RDWN6 XB, a major quantitative trait locus positively enhances root system architecture under nitrogen deficiency in rice. BMC PLANT BIOLOGY 2019; 19:12. [PMID: 30621596 PMCID: PMC6325831 DOI: 10.1186/s12870-018-1620-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 12/27/2018] [Indexed: 05/09/2023]
Abstract
BACKGROUND Nitrogen (N) is a major input cost in rice production, in addition to causing severe pollution to agricultural and ecological environments. Root dry weight has been considered the most important component related to crop yields than the other root traits. Therefore, development of rice varieties/lines with low input of N fertilizer and higher root traits are essential for sustainable rice production. RESULTS In this context, a main effect quantitative trait locus qRDWN6XB on the long arm of chromosome 6 which positively confers tolerance to N deficiency in the Indica rice variety XieqingzaoB, was identified using a chromosomal segment substitution line (CSSL) population. qRDWN6XB was determined to be located near marker InD90 on chromosome 6 based on association analysis of phenotype data from three N levels and 120 polymorphic molecular markers. The target chromosomal segment substitution line CSSL45, which has the higher root dry weight (RDW) than indica cultivar Zhonghui9308 and carry qRDWN6XB, was selected for further study. A BC5F2:3 population derived from a cross between CSSL45 and Zhonghui9308 was constructed. To fine-map qRDWN6XB, we used the homozygous recombinant plants and ultimately this locus was narrowed to a 52.3-kb between markers ND-4 and RM19771, which contains nine candidate genes in this region. One of these genes, LOC_Os06g15910 as a potassium transporter was considered a strong candidate gene for the RDWN6XB locus. CONCLUSIONS The identification of qRDWN6XB provides a new genetic resource for breeding rice varieties and a starting point to improve grain yield despite the decreased input of N fertilizers. The newly developed and tightly linked InDel marker ND-4 will be useful to improve the root system architecture under low N by marker-assisted selection (MAS) in rice breeding programs.
Collapse
Affiliation(s)
- Galal Bakr Anis
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
- Rice Research and Training Center, Field Crops Research Institute, Agriculture Research Center, Kafrelsheikh, 33717 Egypt
| | - Yingxin Zhang
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Anowerul Islam
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Yue Zhang
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Yongrun Cao
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Weixun Wu
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Liyong Cao
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Shihua Cheng
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| |
Collapse
|
10
|
Rao IS, Neeraja CN, Srikanth B, Subrahmanyam D, Swamy KN, Rajesh K, Vijayalakshmi P, Kiran TV, Sailaja N, Revathi P, Rao PR, Rao LVS, Surekha K, Babu VR, Voleti SR. Identification of rice landraces with promising yield and the associated genomic regions under low nitrogen. Sci Rep 2018; 8:9200. [PMID: 29907833 PMCID: PMC6003918 DOI: 10.1038/s41598-018-27484-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 05/25/2018] [Indexed: 11/26/2022] Open
Abstract
With the priority of the low input sustainable rice cultivation for environment friendly agriculture, NUE of rice becomes the need of the hour. A set of 472 rice genotypes comprising landraces and breeding lines were evaluated for two seasons under field conditions with low and recommended nitrogen and >100 landraces were identified with relative higher yield under low nitrogen. Donors were identified for higher N uptake, N translocation into grains and grain yield under low N. Grains on secondary branches, N content in grain and yield appears to be the selection criterion under low N. Through association mapping, using minimum marker set of 50 rice SSR markers, 12 genomic regions were identified for yield and yield associated traits under low nitrogen. Four associated genomic regions on chromosomes 5, 7 and 10 were fine mapped and QTL for yield under low N were identified from the marker delimited regions. Three candidate genes viz., 2-oxoglutarate /malate translocator (Os05g0208000), alanine aminotransferase (Os07g0617800) and pyridoxal phosphate-dependent transferase (Os10g0189600) from QTL regions showed enhanced expression in the genotypes with promising yield under low N. Marker assisted selection using SSR markers associated with three candidate genes identified two stable breeding lines confirmed through multi-location evaluation.
Collapse
Affiliation(s)
- I Subhakara Rao
- ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, 500030, India
| | - C N Neeraja
- ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, 500030, India.
| | - B Srikanth
- ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, 500030, India
| | - D Subrahmanyam
- ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, 500030, India
| | - K N Swamy
- ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, 500030, India
| | - K Rajesh
- ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, 500030, India
| | - P Vijayalakshmi
- ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, 500030, India
| | - T Vishnu Kiran
- ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, 500030, India
| | - N Sailaja
- ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, 500030, India
| | - P Revathi
- ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, 500030, India
| | - P Raghuveer Rao
- ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, 500030, India
| | - L V Subba Rao
- ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, 500030, India
| | - K Surekha
- ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, 500030, India
| | - V Ravindra Babu
- ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, 500030, India
| | - S R Voleti
- ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, 500030, India
| |
Collapse
|
11
|
Ali J, Jewel ZA, Mahender A, Anandan A, Hernandez J, Li Z. Molecular Genetics and Breeding for Nutrient Use Efficiency in Rice. Int J Mol Sci 2018; 19:E1762. [PMID: 29899204 PMCID: PMC6032200 DOI: 10.3390/ijms19061762] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/26/2018] [Accepted: 06/01/2018] [Indexed: 11/17/2022] Open
Abstract
In the coming decades, rice production needs to be carried out sustainably to keep the balance between profitability margins and essential resource input costs. Many fertilizers, such as N, depend primarily on fossil fuels, whereas P comes from rock phosphates. How long these reserves will last and sustain agriculture remains to be seen. Therefore, current agricultural food production under such conditions remains an enormous and colossal challenge. Researchers have been trying to identify nutrient use-efficient varieties over the past few decades with limited success. The concept of nutrient use efficiency is being revisited to understand the molecular genetic basis, while much of it is not entirely understood yet. However, significant achievements have recently been observed at the molecular level in nitrogen and phosphorus use efficiency. Breeding teams are trying to incorporate these valuable QTLs and genes into their rice breeding programs. In this review, we seek to identify the achievements and the progress made so far in the fields of genetics, molecular breeding and biotechnology, especially for nutrient use efficiency in rice.
Collapse
Affiliation(s)
- Jauhar Ali
- Rice Breeding Platform, International Rice Research Institute (IRRI), Los Baños, Laguna 4031, Philippines.
| | - Zilhas Ahmed Jewel
- Rice Breeding Platform, International Rice Research Institute (IRRI), Los Baños, Laguna 4031, Philippines.
| | - Anumalla Mahender
- Rice Breeding Platform, International Rice Research Institute (IRRI), Los Baños, Laguna 4031, Philippines.
| | - Annamalai Anandan
- ICAR-National Rice Research Institute, Cuttack, Odisha 753006, India.
| | - Jose Hernandez
- Institute of Crop Science, College of Agriculture and Food Science, University of the Philippines Los Baños, Laguna 4031, Philippines.
| | - Zhikang Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Science, Beijing 100081, China.
| |
Collapse
|
12
|
Feng B, Chen K, Cui Y, Wu Z, Zheng T, Zhu Y, Ali J, Wang B, Xu J, Zhang W, Li Z. Genetic Dissection and Simultaneous Improvement of Drought and Low Nitrogen Tolerances by Designed QTL Pyramiding in Rice. FRONTIERS IN PLANT SCIENCE 2018; 9:306. [PMID: 29593764 PMCID: PMC5855007 DOI: 10.3389/fpls.2018.00306] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 02/22/2018] [Indexed: 05/13/2023]
Abstract
Drought and low nitrogen are the most common abiotic stresses limiting rice productivity in the rainfed rice areas of Asia and Africa. Development and adoption of green super rice (GSR) varieties with greatly improved drought tolerance (DT) and low nitrogen tolerance (LNT) are the most efficient way to resolve this problem. In this study, using three sets of trait-specific introgression lines (ILs) in a Xian (indica) variety Huanghuazhan (HHZ) background, we identified nine DT-QTL and seven LNT-QTL by a segregation distortion approach and a genome-wide association study, respectively. Based on performances of DT and LNT and genotypes at the detected QTL, two ILs M79 and M387 with DT and LNT were selected for cross-making to validate the identified QTL and to develop DT and LNT rice lines by pyramiding two DT-QTL (qDT3.9 and qDT6.3) and two LNT-QTL (qGY1 and qSF8). Using four pairs of kompetitive allele specific PCR (KASP) SNP markers, we selected 66 F2 individuals with different combinations of the target DT- and LNT-QTL favorable alleles and they showed expected improvement in DT and/or LNT, which were further validated by the significant improvement in DT and/or LNT of their F3 progeny testing. Based on evaluation of pyramiding lines in F3 lines under drought, low nitrogen (LN) and normal conditions, four promising pyramiding lines having different QTL favorable alleles were selected, which showed significantly improved tolerances to drought and/or LN than HHZ and their IL parents. Our results demonstrated that trait-specific ILs could effectively connect QTL mapping and QTL pyramiding breeding, and designed QTL pyramiding (DQP) using ILs could be more effective in molecular rice breeding for complex quantitative traits.
Collapse
Affiliation(s)
- Bo Feng
- Rice Research Institute, Shenyang Agricultural University, Key Laboratory of Northern Japonica Rice Genetics and Breeding, Ministry of Education, Shenyang, China
- Institute of Crop Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kai Chen
- Shenzhen Institute of Breeding and Innovation, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yanru Cui
- Institute of Crop Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhichao Wu
- Institute of Crop Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tianqing Zheng
- Institute of Crop Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yajun Zhu
- Shenzhen Institute of Breeding and Innovation, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Jauhar Ali
- International Rice Research Institute, Los Baños, Philippines
| | | | - Jianlong Xu
- Institute of Crop Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
- Shenzhen Institute of Breeding and Innovation, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Wenzhong Zhang
- Rice Research Institute, Shenyang Agricultural University, Key Laboratory of Northern Japonica Rice Genetics and Breeding, Ministry of Education, Shenyang, China
| | - Zhikang Li
- Institute of Crop Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
- Shenzhen Institute of Breeding and Innovation, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
13
|
Genetic dissection of plant growth habit in chickpea. Funct Integr Genomics 2017; 17:711-723. [PMID: 28600722 DOI: 10.1007/s10142-017-0566-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 05/01/2017] [Accepted: 05/26/2017] [Indexed: 12/17/2022]
Abstract
A combinatorial genomics-assisted breeding strategy encompassing association analysis, genetic mapping and expression profiling is found most promising for quantitative dissection of complex traits in crop plants. The present study employed GWAS (genome-wide association study) using 24,405 SNPs (single nucleotide polymorphisms) obtained with genotyping-by-sequencing (GBS) of 92 sequenced desi and kabuli accessions of chickpea. This identified eight significant genomic loci associated with erect (E)/semi-erect (SE) vs. spreading (S)/semi-spreading (SS)/prostrate (P) plant growth habit (PGH) trait differentiation regardless of diverse desi and kabuli genetic backgrounds of chickpea. These associated SNPs in combination explained 23.8% phenotypic variation for PGH in chickpea. Five PGH-associated genes were validated successfully in E/SE and SS/S/P PGH-bearing parental accessions and homozygous individuals of three intra- and interspecific RIL (recombinant inbred line) mapping populations as well as 12 contrasting desi and kabuli chickpea germplasm accessions by selective genotyping through Sequenom MassARRAY. The shoot apical, inflorescence and floral meristems-specific expression, including upregulation (seven-fold) of five PGH-associated genes especially in germplasm accessions and homozygous RIL mapping individuals contrasting with E/SE PGH traits was apparent. Collectively, this integrated genomic strategy delineated diverse non-synonymous SNPs from five candidate genes with strong allelic effects on PGH trait variation in chickpea. Of these, two vernalization-responsive non-synonymous SNP alleles carrying SNF2 protein-coding gene and B3 transcription factor associated with PGH traits were found to be the most promising in chickpea. The SNP allelic variants associated with E/SE/SS/S PGH trait differentiation were exclusively present in all cultivated desi and kabuli chickpea accessions while wild species/accessions belonging to primary, secondary and tertiary gene pools mostly contained prostrate PGH-associated SNP alleles. This indicates strong adaptive natural/artificial selection pressure (Tajima's D 3.15 to 4.57) on PGH-associated target genomic loci during chickpea domestication. These vital leads thus have potential to decipher complex transcriptional regulatory gene function of PGH trait differentiation and for understanding the selective sweep-based PGH trait evolution and domestication pattern in cultivated and wild chickpea accessions adapted to diverse agroclimatic conditions. Collectively, the essential inputs generated will be of profound use in marker-assisted genetic enhancement to develop cultivars with desirable plant architecture of erect growth habit types in chickpea.
Collapse
|
14
|
Fan X, Naz M, Fan X, Xuan W, Miller AJ, Xu G. Plant nitrate transporters: from gene function to application. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:2463-2475. [PMID: 28158856 DOI: 10.1093/jxb/erx011] [Citation(s) in RCA: 175] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
We summarize nitrate transporters and discuss their potential in breeding for improved nitrogen use efficiency and yield.
Collapse
Affiliation(s)
- Xiaorong Fan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Misbah Naz
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoru Fan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Xuan
- Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Anthony J Miller
- Metabolic Biology Department, John Innes Centre, Norwich Research Park , Norwich NR4 7UH, UK
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
15
|
Rakoczy-Trojanowska M, Krajewski P, Bocianowski J, Schollenberger M, Wakuliński W, Milczarski P, Masojć P, Targońska-Karasek M, Banaszak Z, Banaszak K, Brukwiński W, Orczyk W, Kilian A. Identification of Single Nucleotide Polymorphisms Associated with Brown Rust Resistance, α-Amylase Activity and Pre-harvest Sprouting in Rye ( Secale cereale L.). PLANT MOLECULAR BIOLOGY REPORTER 2017; 35:366-378. [PMID: 28603340 PMCID: PMC5443880 DOI: 10.1007/s11105-017-1030-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Rye is a crop with relatively high resistance to biotic and abiotic stresses. However, the resistance to brown rust (Puccinia recondita f. sp. secalis) and pre-harvest sprouting are still not satisfactory. High α-amylase activity is also among the main disadvantages of this species. Therefore, effective tools, e.g. molecular markers, allowing precise and environmentally independent selection of favourable alleles are desirable. In the present study, two kinds of association mapping-genome-wide association mapping (GWAM) based on sequences of DArTSeq markers and candidate gene association mapping (CGAM) based on sequences of ScBx genes-were chosen for development of molecular markers fulfilling these criteria. The analysed population consisted of 149 diverse inbred lines (DILs). Altogether, 67 and 11 single nucleotide polymorphisms (SNPs) identified in, respectively, GWAM and CGAM, were significantly associated with the investigated traits: 2 SNPs with resistance to brown rust, 71 SNPs with resistance to pre-harvest sprouting and 5 SNPs with α-amylase activity in the grain. Fifteen SNPs were stable across all environments. The highest number (13) of environmentally stable SNPs was associated with pre-harvest sprouting resistance. The test employing the Kompetitive Allele Specific PCR method proved the versatility of four markers identified in both GWAM and CGAM.
Collapse
Affiliation(s)
- Monika Rakoczy-Trojanowska
- Warsaw University of Life Sciences, Warsaw, Poland
- Polish Academy of Sciences Botanical Garden – Centre For Biological Diversity Conservation, Powsin, Warsaw, Poland
| | - Paweł Krajewski
- Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | | | | | | | | | - Piotr Masojć
- West Pomeranian University of Technology, Szczecin, Poland
| | - Małgorzata Targońska-Karasek
- Warsaw University of Life Sciences, Warsaw, Poland
- Polish Academy of Sciences Botanical Garden – Centre For Biological Diversity Conservation, Powsin, Warsaw, Poland
| | | | | | | | - Wacław Orczyk
- The Plant Breeding and Acclimatization Institute – National Research Institute, Radzików, Poland
| | | |
Collapse
|
16
|
Bui TGT, Hoa NTL, Yen JY, Schafleitner R. PCR-based assays for validation of single nucleotide polymorphism markers in rice and mungbean. Hereditas 2017; 154:3. [PMID: 28149257 PMCID: PMC5270362 DOI: 10.1186/s41065-016-0024-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 12/20/2016] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Single nucleotide polymorphism (SNP) markers are the method of choice for genetic analyses including diversity and quantitative trait loci (QTL) studies. Marker validation is essential for QTL studies, but the cost and workload are considerable when large numbers of markers need to be verified. Marker systems with low development costs would be most suitable for this task. RESULTS We have tested allele specific polymerase chain reaction (PCR), tetra markers and a genotyping tool based on the single strand specific nuclease CEL-I to verify randomly selected SNP markers identified previously either with a SNP array or by genotyping by sequencing in rice and mungbean, respectively. The genotyping capacity of allele-specific PCR and tetra markers was affected by the sequence context surrounding the SNP; SNPs located in repeated sequences and in GC-rich stretches could not be correctly identified. In contrast, CEL-I digestion of mixed fragments produced from test and reference DNA reliably pinpointed the correct genotypes, yet scoring of the genotypes became complicated when multiple SNPs were present in the PCR fragments. A cost analysis showed that as long the sample number remains small, CEL-I genotyping is more cost-effective than tetra markers. CONCLUSIONS CEL-I genotyping performed better in terms of genotyping accuracy and costs than tetra markers. The method is highly useful for validating SNPs in small to medium size germplasm panels.
Collapse
Affiliation(s)
- Thu Giang Thi Bui
- Plant Resources Center, Vietnam Academy of Agricultural Sciences, An Khanh, Hoai Duc, Ha Noi, Vietnam
| | - Nguyen Thi Lan Hoa
- Plant Resources Center, Vietnam Academy of Agricultural Sciences, An Khanh, Hoai Duc, Ha Noi, Vietnam
| | - Jo-yi Yen
- World Vegetable Center, 60 Yi Min Liao, Shanhua, Tainan, 74151 Taiwan
| | | |
Collapse
|
17
|
Yang X, Xia X, Zhang Z, Nong B, Zeng Y, Xiong F, Wu Y, Gao J, Deng G, Li D. QTL Mapping by Whole Genome Re-sequencing and Analysis of Candidate Genes for Nitrogen Use Efficiency in Rice. FRONTIERS IN PLANT SCIENCE 2017; 8:1634. [PMID: 28983307 PMCID: PMC5613164 DOI: 10.3389/fpls.2017.01634] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 09/06/2017] [Indexed: 05/22/2023]
Abstract
Nitrogen is a major nutritional element in rice production. However, excessive application of nitrogen fertilizer has caused severe environmental pollution. Therefore, development of rice varieties with improved nitrogen use efficiency (NUE) is urgent for sustainable agriculture. In this study, bulked segregant analysis (BSA) combined with whole genome re-sequencing (WGS) technology was applied to finely map quantitative trait loci (QTL) for NUE. A key QTL, designated as qNUE6 was identified on chromosome 6 and further validated by Insertion/Deletion (InDel) marker-based substitutional mapping in recombinants from F2 population (NIL-13B4 × GH998). Forty-four genes were identified in this 266.5-kb region. According to detection and annotation analysis of variation sites, 39 genes with large-effect single-nucleotide polymorphisms (SNPs) and large-effect InDels were selected as candidates and their expression levels were analyzed by qRT-PCR. Significant differences in the expression levels of LOC_Os06g15370 (peptide transporter PTR2) and LOC_Os06g15420 (asparagine synthetase) were observed between two parents (Y11 and GH998). Phylogenetic analysis in Arabidopsis thaliana identified two closely related homologs, AT1G68570 (AtNPF3.1) and AT5G65010 (ASN2), which share 72.3 and 87.5% amino acid similarity with LOC_Os06g15370 and LOC_Os06g15420, respectively. Taken together, our results suggested that qNUE6 is a possible candidate gene for NUE in rice. The fine mapping and candidate gene analysis of qNUE6 provide the basis of molecular breeding for genetic improvement of rice varieties with high NUE, and lay the foundation for further cloning and functional analysis.
Collapse
Affiliation(s)
- Xinghai Yang
- Rice Research Institute, Guangxi Academy of Agricultural SciencesNanning, China
| | - Xiuzhong Xia
- Rice Research Institute, Guangxi Academy of Agricultural SciencesNanning, China
| | - Zongqiong Zhang
- Rice Research Institute, Guangxi Academy of Agricultural SciencesNanning, China
| | - Baoxuan Nong
- Rice Research Institute, Guangxi Academy of Agricultural SciencesNanning, China
| | - Yu Zeng
- Rice Research Institute, Guangxi Academy of Agricultural SciencesNanning, China
| | - Faqian Xiong
- Cash Crops Research Institute, Guangxi Academy of Agricultural SciencesNanning, China
| | - Yanyan Wu
- Biotechnology Research Institute, Guangxi Academy of Agricultural SciencesNanning, China
| | - Ju Gao
- Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Guangxi Academy of Agricultural SciencesNanning, China
| | - Guofu Deng
- Rice Research Institute, Guangxi Academy of Agricultural SciencesNanning, China
| | - Danting Li
- Rice Research Institute, Guangxi Academy of Agricultural SciencesNanning, China
- *Correspondence: Danting Li
| |
Collapse
|
18
|
Zhou Y, Tao Y, Tang D, Wang J, Zhong J, Wang Y, Yuan Q, Yu X, Zhang Y, Wang Y, Liang G, Dong G. Identification of QTL Associated with Nitrogen Uptake and Nitrogen Use Efficiency Using High Throughput Genotyped CSSLs in Rice ( Oryza sativa L.). FRONTIERS IN PLANT SCIENCE 2017; 8:1166. [PMID: 28744289 PMCID: PMC5504168 DOI: 10.3389/fpls.2017.01166] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/19/2017] [Indexed: 05/19/2023]
Abstract
Nitrogen (N) availability is a major factor limiting crop growth and development. Identification of quantitative trait loci (QTL) for N uptake (NUP) and N use efficiency (NUE) can provide useful information regarding the genetic basis of these traits and their associated effects on yield production. In this study, a set of high throughput genotyped chromosome segment substitution lines (CSSLs) derived from a cross between recipient 9311 and donor Nipponbare were used to identify QTL for rice NUP and NUE. Using high throughput sequencing, each CSSL were genotyped and an ultra-high-quality physical map was constructed. A total of 13 QTL, seven for NUP and six for NUE, were identified in plants under hydroponic culture with all nutrients supplied in sufficient quantities. The proportion of phenotypic variation explained by these QTL for NUP and NUE ranged from 3.16-13.99% and 3.76-12.34%, respectively. We also identified several QTL for biomass yield (BY) and grain yield (GY), which were responsible for 3.21-45.54% and 6.28-7.31%, respectively, of observed phenotypic variation. GY were significantly positively correlated with NUP and NUE, with NUP more closely correlated than NUE. Our results contribute information to NUP and NUE improvement in rice.
Collapse
Affiliation(s)
- Yong Zhou
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou UniversityYangzhou, China
| | - Yajun Tao
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou UniversityYangzhou, China
| | - Dongnan Tang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou UniversityYangzhou, China
| | - Jun Wang
- Institute of Food Crops, Jiangsu High Quality Rice Research and Development Center, Nanjing Branch of China National Center for Rice Improvement, Jiangsu Academy of Agricultural SciencesNanjing, China
| | - Jun Zhong
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou UniversityYangzhou, China
| | - Yi Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou UniversityYangzhou, China
| | - Qiumei Yuan
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou UniversityYangzhou, China
| | - Xiaofeng Yu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou UniversityYangzhou, China
| | - Yan Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou UniversityYangzhou, China
| | - Yulong Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou UniversityYangzhou, China
| | - Guohua Liang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou UniversityYangzhou, China
- *Correspondence: Guichun Dong, Guohua Liang,
| | - Guichun Dong
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou UniversityYangzhou, China
- *Correspondence: Guichun Dong, Guohua Liang,
| |
Collapse
|
19
|
Mahjourimajd S, Taylor J, Sznajder B, Timmins A, Shahinnia F, Rengel Z, Khabaz-Saberi H, Kuchel H, Okamoto M, Langridge P. Genetic Basis for Variation in Wheat Grain Yield in Response to Varying Nitrogen Application. PLoS One 2016; 11:e0159374. [PMID: 27459317 PMCID: PMC4961366 DOI: 10.1371/journal.pone.0159374] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 07/03/2016] [Indexed: 01/15/2023] Open
Abstract
Nitrogen (N) is a major nutrient needed to attain optimal grain yield (GY) in all environments. Nitrogen fertilisers represent a significant production cost, in both monetary and environmental terms. Developing genotypes capable of taking up N early during development while limiting biomass production after establishment and showing high N-use efficiency (NUE) would be economically beneficial. Genetic variation in NUE has been shown previously. Here we describe the genetic characterisation of NUE and identify genetic loci underlying N response under different N fertiliser regimes in a bread wheat population of doubled-haploid lines derived from a cross between two Australian genotypes (RAC875 × Kukri) bred for a similar production environment. NUE field trials were carried out at four sites in South Australia and two in Western Australia across three seasons. There was genotype-by-environment-by-treatment interaction across the sites and also good transgressive segregation for yield under different N supply in the population. We detected some significant Quantitative Trait Loci (QTL) associated with NUE and N response at different rates of N application across the sites and years. It was also possible to identify lines showing positive N response based on the rankings of their Best Linear Unbiased Predictions (BLUPs) within a trial. Dissecting the complexity of the N effect on yield through QTL analysis is a key step towards elucidating the molecular and physiological basis of NUE in wheat.
Collapse
Affiliation(s)
- Saba Mahjourimajd
- Australian Centre for Plant Functional Genomics (ACPFG), The University of Adelaide, PMB1, Glen Osmond, SA, 5064, Australia
| | - Julian Taylor
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, SA, 5064, Australia
| | - Beata Sznajder
- Australian Centre for Plant Functional Genomics (ACPFG), The University of Adelaide, PMB1, Glen Osmond, SA, 5064, Australia
| | - Andy Timmins
- Australian Centre for Plant Functional Genomics (ACPFG), The University of Adelaide, PMB1, Glen Osmond, SA, 5064, Australia
| | - Fahimeh Shahinnia
- Australian Centre for Plant Functional Genomics (ACPFG), The University of Adelaide, PMB1, Glen Osmond, SA, 5064, Australia
| | - Zed Rengel
- Soil Science and Plant Nutrition M087, School of Earth and Environment, University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Hossein Khabaz-Saberi
- Soil Science and Plant Nutrition M087, School of Earth and Environment, University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Haydn Kuchel
- Australian Grain Technologies, PMB1, Glen Osmond, SA, 5064, Australia
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, SA, 5064, Australia
| | - Mamoru Okamoto
- Australian Centre for Plant Functional Genomics (ACPFG), The University of Adelaide, PMB1, Glen Osmond, SA, 5064, Australia
- * E-mail: (PL); (MO)
| | - Peter Langridge
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, SA, 5064, Australia
- * E-mail: (PL); (MO)
| |
Collapse
|
20
|
Mahjourimajd S, Taylor J, Rengel Z, Khabaz-Saberi H, Kuchel H, Okamoto M, Langridge P. The Genetic Control of Grain Protein Content under Variable Nitrogen Supply in an Australian Wheat Mapping Population. PLoS One 2016; 11:e0159371. [PMID: 27438012 PMCID: PMC4954668 DOI: 10.1371/journal.pone.0159371] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 07/03/2016] [Indexed: 11/19/2022] Open
Abstract
Genetic variation has been observed in both protein concentration in wheat grain and total protein content (protein yield). Here we describe the genetic analysis of variation for grain protein in response to nitrogen (N) supply and locate significant genomic regions controlling grain protein components in a spring wheat population. In total, six N use efficiency (NUE) field trials were carried out for the target traits in a sub-population of doubled haploid lines derived from a cross between two Australian varieties, RAC875 and Kukri, in Southern and Western Australia from 2011 to 2013. Twenty-four putative Quantitative Trait Loci (QTL) for protein-related traits were identified at high and low N supply and ten QTL were identified for the response to N for the traits studied. These loci accounted for a significant proportion of the overall effect of N supply. Several of the regions were co-localised with grain yield QTL and are promising targets for further investigation and selection in breeding programs.
Collapse
Affiliation(s)
- Saba Mahjourimajd
- Australian Centre for Plant Functional Genomics (ACPFG), The University of Adelaide, PMB1, Glen Osmond, SA 5064, Australia
| | - Julian Taylor
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia
| | - Zed Rengel
- Soil Science and Plant Nutrition M087, School of Earth and Environment, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Hossein Khabaz-Saberi
- Soil Science and Plant Nutrition M087, School of Earth and Environment, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Haydn Kuchel
- Australian Grain Technologies, PMB1, Glen Osmond, SA 5064, Australia
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia
| | - Mamoru Okamoto
- Australian Centre for Plant Functional Genomics (ACPFG), The University of Adelaide, PMB1, Glen Osmond, SA 5064, Australia
- * E-mail: (PL); (MO)
| | - Peter Langridge
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia
- * E-mail: (PL); (MO)
| |
Collapse
|