1
|
Wang K, Xu L, Wang Y, Ying J, Li J, Dong J, Li C, Zhang X, Liu L. Genome-wide characterization of homeodomain-leucine zipper genes reveals RsHDZ17 enhances the heat tolerance in radish (Raphanus sativus L.). PHYSIOLOGIA PLANTARUM 2022; 174:e13789. [PMID: 36183327 DOI: 10.1111/ppl.13789] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/06/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Homeodomain-leucine zipper (HD-Zip) transcription factors are involved in various biological processes of plant growth, development, and abiotic stress response. However, how they regulate heat stress (HS) response remains largely unclear in plants. In this study, a total of 83 RsHD-Zip genes were firstly identified from the genome of Raphanus sativus. RNA-Seq, RT-qPCR and promoter activity assays revealed that RsHDZ17 from HD-Zip Class I was highly expressed under heat, salt, and Cd stresses. RsHDZ17 is a nuclear protein with transcriptional activity at the C-terminus. Ectopic overexpression (OE) of RsHDZ17 in Arabidopsis thaliana enhanced the HS tolerance by improving the survival rate, photosynthesis capacity, and scavenging for reactive oxygen species (ROS). In addition, transient OE of RsHDZ17 in radish cotyledons impeded cell injury and augmented ROS scavenging under HS. Moreover, yeast one-hybrid, dual-luciferase assay, and electrophoretic mobility shift assay revealed that RsHDZ17 could bind to the promoter of HSFA1e. Collectively, these pieces of evidence demonstrate that RsHDZ17 could play a positive role in thermotolerance, partially through up-regulation of the expression of HSFA1e in plants. These results provide novel insights into the role of HD-Zips in radish and facilitate genetical engineering and development of heat-tolerant radish in breeding programs.
Collapse
Affiliation(s)
- Kai Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Liang Xu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Yan Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Jiali Ying
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Jingxue Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Junhui Dong
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Cui Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Xiaoli Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Liwang Liu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
| |
Collapse
|
2
|
Ren W, Si J, Chen L, Fang Z, Zhuang M, Lv H, Wang Y, Ji J, Yu H, Zhang Y. Mechanism and Utilization of Ogura Cytoplasmic Male Sterility in Cruciferae Crops. Int J Mol Sci 2022; 23:ijms23169099. [PMID: 36012365 PMCID: PMC9409259 DOI: 10.3390/ijms23169099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 12/11/2022] Open
Abstract
Hybrid production using lines with cytoplasmic male sterility (CMS) has become an important way to utilize heterosis in vegetables. Ogura CMS, with the advantages of complete pollen abortion, ease of transfer and a progeny sterility rate reaching 100%, is widely used in cruciferous crop breeding. The mapping, cloning, mechanism and application of Ogura CMS and fertility restorer genes in Brassica napus, Brassica rapa, Brassica oleracea and other cruciferous crops are reviewed herein, and the existing problems and future research directions in the application of Ogura CMS are discussed.
Collapse
Affiliation(s)
- Wenjing Ren
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing 100081, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinchao Si
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing 100081, China
| | - Li Chen
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing 100081, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhiyuan Fang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing 100081, China
| | - Mu Zhuang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing 100081, China
| | - Honghao Lv
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing 100081, China
| | - Yong Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing 100081, China
| | - Jialei Ji
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing 100081, China
| | - Hailong Yu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing 100081, China
- Correspondence: (H.Y.); (Y.Z.)
| | - Yangyong Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing 100081, China
- Correspondence: (H.Y.); (Y.Z.)
| |
Collapse
|
3
|
Liu C, Fu W, Xu W, Liu X, Wang S. Genome-wide transcriptome analysis of microspore abortion initiation in radish (Raphanus sativus L.). Gene 2021; 794:145753. [PMID: 34090961 DOI: 10.1016/j.gene.2021.145753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/17/2021] [Accepted: 06/01/2021] [Indexed: 10/21/2022]
Abstract
The use of male sterile lines is one of the ideal means in hybrid seed production. Despite the widespread application of Ogura cytoplasmic male sterile (CMS) lines, the molecular mechanisms remain largely unknown. In this study, histological analyses of floral buds from a CMS line 40MA and its corresponding maintainer line 40MB were conducted, which indicate that microspore abortion was initiated shortly after the tetrad stage. RNA sequencing was performed to analyze the transcriptomes of floral buds from the tetrad stage and the early microspore stages of these two lines. More than 39 million clean reads were generated for each library, and the portions mapped to the reference genome were all above 70.60%. To further analyze the differentially expressed genes (DEGs), the samples were grouped into four pairs, of which the pair of 40MA and 40MB at the early microspore stage showed the most DEGs (5100 members). According to the abnormal appearance of the tapetum cells in 40MA, a series of tapetum development related genes were screened and analyzed. In addition, a total of 623 genes with differential expressions in the tetrad stage, but not in the early microspore stage between the two lines were filtered as the microspore abortion initiation related candidates. Twelve genes were selected to validate the sequencing result by quantitative RT-PCR. In this study, we identified a number of candidate genes involved in the initiation of microspore degeneration, which may provide a new perspective to unravel the molecular mechanism of Ogura CMS.
Collapse
Affiliation(s)
- Chen Liu
- Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Vegetable Improvement Center, Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Weimin Fu
- Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Vegetable Improvement Center, Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Wenling Xu
- Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Vegetable Improvement Center, Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Xianxian Liu
- Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Vegetable Improvement Center, Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Shufen Wang
- Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Vegetable Improvement Center, Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Jinan 250100, China.
| |
Collapse
|
4
|
Yang X, Ye J, Niu F, Feng Y, Song X. Identification and verification of genes related to pollen development and male sterility induced by high temperature in the thermo-sensitive genic male sterile wheat line. PLANTA 2021; 253:83. [PMID: 33770279 DOI: 10.1007/s00425-021-03601-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
Bioinformatic analysis identified the function of genes regulating wheat fertility. Barley stripe mosaic virus-induced gene silencing verified that the genes TaMut11 and TaSF3 are involved in pollen development and related to fertility conversion. Environment-sensitive genic male sterility is of vital importance to hybrid vigor in crop production and breeding. Therefore, it is meaningful to study the function of the genes related to pollen development and male sterility, which is still not fully understand currently. In this study, YanZhan 4110S, a new thermo-sensitive genic male sterility wheat line, and its near-isogenic line YanZhan 4110 were analyzed. Through comparative transcriptome basic bioinformatics and weighted gene co-expression network to further identify some hub genes, the genes TaMut11 and TaSF3 associated with pollen development and male sterility induced by high-temperature were identified in YanZhan 4110S. Further verification through barley stripe mosaic virus-induced gene silencing elucidated that the silencing of TaMut11 and TaSF3 caused pollen abortion, finally resulting in the declination of fertility. These findings provided data on the abortive mechanism in environment-sensitive genic male sterility wheat.
Collapse
Affiliation(s)
- Xuetong Yang
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jiali Ye
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Fuqiang Niu
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yi Feng
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Xiyue Song
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
5
|
Krüger M, Abeyawardana OAJ, Krüger C, Juříček M, Štorchová H. Differentially Expressed Genes Shared by Two Distinct Cytoplasmic Male Sterility (CMS) Types of Silene vulgaris Suggest the Importance of Oxidative Stress in Pollen Abortion. Cells 2020; 9:cells9122700. [PMID: 33339225 PMCID: PMC7766179 DOI: 10.3390/cells9122700] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 12/14/2020] [Indexed: 11/25/2022] Open
Abstract
Cytoplasmic male sterility (CMS), encoded by the interacting mitochondrial and nuclear genes, causes pollen abortion or non-viability. CMS is widely used in agriculture and extensively studied in crops. Much less is known about CMS in wild species. We performed a comparative transcriptomic analysis of male sterile and fertile individuals of Silene vulgaris, a model plant for the study of gynodioecy, to reveal the genes responsible for pollen abortion in this species. We used RNA-seq datasets previously employed for the analysis of mitochondrial and plastid transcriptomes of female and hermaphrodite flower buds, making it possible to compare the transcriptomes derived from three genomes in the same RNA specimen. We assembled de novo transcriptomes for two haplotypes of S. vulgaris and identified differentially expressed genes between the females and hermaphrodites, associated with stress response or pollen development. The gene for alternative oxidase was downregulated in females. The genetic pathways controlling CMS in S. vulgaris are similar to those in crops. The high number of the differentially expressed nuclear genes contrasts with the uniformity of organellar transcriptomes across genders, which suggests these pathways are evolutionarily conserved and that selective mechanisms may shield organellar transcription against changes in the cytoplasmic transcriptome.
Collapse
Affiliation(s)
- Manuela Krüger
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 16502 Prague, Czech Republic; (M.K.); (O.A.J.A.); (C.K.); (M.J.)
| | - Oushadee A. J. Abeyawardana
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 16502 Prague, Czech Republic; (M.K.); (O.A.J.A.); (C.K.); (M.J.)
- Department of Horticulture, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague 6-Suchdol, Czech Republic
| | - Claudia Krüger
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 16502 Prague, Czech Republic; (M.K.); (O.A.J.A.); (C.K.); (M.J.)
| | - Miloslav Juříček
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 16502 Prague, Czech Republic; (M.K.); (O.A.J.A.); (C.K.); (M.J.)
| | - Helena Štorchová
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 16502 Prague, Czech Republic; (M.K.); (O.A.J.A.); (C.K.); (M.J.)
- Correspondence: ; Tel.: +420-225-106-828
| |
Collapse
|
6
|
Li P, Zhang D, Su T, Wang W, Yu Y, Zhao X, Li Z, Yu S, Zhang F. Genome-wide analysis of mRNA and lncRNA expression and mitochondrial genome sequencing provide insights into the mechanisms underlying a novel cytoplasmic male sterility system, BVRC-CMS96, in Brassicarapa. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:2157-2170. [PMID: 32399654 DOI: 10.1007/s00122-020-03587-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 03/31/2020] [Indexed: 05/26/2023]
Abstract
Characterization of a novel and valuable CMS system in Brassicarapa. Cytoplasmic male sterility (CMS) is extensively used to produce F1 hybrid seeds in a variety of crops. However, it has not been successfully used in Chinese cabbage (Brassicarapa L. ssp. pekinensis) because of degeneration or temperature sensitivity. Here, we characterize a novel CMS system, BVRC-CMS96, which originated in B.napus cybrid obtained from INRAE, France and transferred by us to B.rapa. Floral morphology and agronomic characteristics indicate that BVRC-CMS96 plants are 100% male sterile and show no degeneration in the BC7 generation, confirming its suitability for commercial use. We also sequenced the BVRC-CMS96 and maintainer line 18BCM mitochondrial genomes. Genomic analyses showed the presence of syntenic blocks and distinct structures between BVRC-CMS96 and 18BCM and the other known CMS systems. We found that BVRC-CMS96 has one orf222 from 'Nap'-type CMS and two copies of orf138 from 'Ogu'-type CMS. We analyzed expression of orf222, orf138, orf261b, and the mitochondrial energy genes (atp6, atp9, and cox1) in flower bud developmental stages S1-S5 and in four floral organs. orf138 and orf222 were both highly expressed in S4, S5-stage buds, calyx, and the stamen. RNA-seq identified differentially expressed mRNAs and lncRNAs (long non-coding RNAs) that were significantly enriched in pollen wall assembly, pollen development, and pollen coat. Our findings suggest that an energy supply disorder caused by orf222/orf138/orf261b may inhibit a series of nuclear pollen development-related genes. Our study shows that BVRC-CMS96 is a valuable CMS system, and our detailed molecular analysis will facilitate its application in Chinese cabbage breeding.
Collapse
Affiliation(s)
- Peirong Li
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Deshuang Zhang
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Tongbing Su
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Weihong Wang
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Yangjun Yu
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Xiuyun Zhao
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Zhenxing Li
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Shuancang Yu
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, 100097, China.
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100097, China.
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China.
| | - Fenglan Zhang
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, 100097, China.
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100097, China.
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China.
| |
Collapse
|
7
|
Wei X, Lv Y, Zhao Y, Nath UK, Yuan Y, Wang Z, Yang S, Jia H, Wei F, Zhang X. Comparative transcriptome analysis in Chinese cabbage ( Brassica rapa ssp. pekinesis) for DEGs of Ogura-, Polima-CMS and their shared maintainer. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:719-731. [PMID: 32255935 PMCID: PMC7113364 DOI: 10.1007/s12298-020-00775-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/07/2020] [Accepted: 02/13/2020] [Indexed: 06/11/2023]
Abstract
Cytoplasmic male sterility (CMS) is maternally inherited trait, which hinders the ability to produce viable pollen in plants. It serves as a useful tool for hybrid seed production via exploiting heterosis in crops. The molecular mechanism of CMS and fertility restoration has been investigated in different crops. However, limited number of reports is available on comparison of Ogura- and Polima-CMS with their shared maintainer in Chinese cabbage. We performed transcript profiling of sterile Ogura CMS (Tyms), Polima CMS (22m2) and their shared maintainer line (231-330) with an aim to identify genes associated with male sterility. In this work, we identified 912, 7199 and 6381 DEGs (Differentially Expressed Genes) in 22m2 Vs Tyms, 231-330 VS 22m2 and 231-330 Vs Tyms, respectively. The GO (Gene Ontology) annotation and KEGG pathway analysis suggested that most of the DEGs were involved in pollen development, carbon metabolism, lipase activity, lipid binding, penta-tricopeptide repeat (PPR), citrate cycle and oxidative phosphorylation, which were down-regulated in both CMS lines. This result will provide an important resource for further understanding of functional pollen development, the CMS mechanism and to improve molecular breeding in Chinese cabbage.
Collapse
Affiliation(s)
- Xiaochun Wei
- School of Agricultural Sciences, College of Life Science, Zhengzhou University, Zhengzhou, 450001 People’s Republic of China
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 People’s Republic of China
| | - Yanyan Lv
- School of Agricultural Sciences, College of Life Science, Zhengzhou University, Zhengzhou, 450001 People’s Republic of China
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 People’s Republic of China
| | - Yanyan Zhao
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 People’s Republic of China
| | - Ujjal Kumar Nath
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh, 2202 Bangladesh
| | - Yuxiang Yuan
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 People’s Republic of China
| | - Zhiyong Wang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 People’s Republic of China
| | - Shuangjuan Yang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 People’s Republic of China
| | - Hao Jia
- School of Agricultural Sciences, College of Life Science, Zhengzhou University, Zhengzhou, 450001 People’s Republic of China
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 People’s Republic of China
| | - Fang Wei
- School of Agricultural Sciences, College of Life Science, Zhengzhou University, Zhengzhou, 450001 People’s Republic of China
| | - Xiaowei Zhang
- School of Agricultural Sciences, College of Life Science, Zhengzhou University, Zhengzhou, 450001 People’s Republic of China
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 People’s Republic of China
| |
Collapse
|
8
|
Transcriptome analysis identified aberrant gene expression in pollen developmental pathways leading to CGMS in cotton (Gossypium hirsutum L.). PLoS One 2019; 14:e0218381. [PMID: 31233531 PMCID: PMC6590983 DOI: 10.1371/journal.pone.0218381] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 06/01/2019] [Indexed: 11/19/2022] Open
Abstract
Male sterility (induced or natural) is a potential tool for commercial hybrid seed production in different crops. Despite numerous endeavors to understand the physiological, hereditary, and molecular cascade of events governing CMS in cotton, the exact biological process controlling sterility and fertility reconstruction remains obscure. During current study, RNA-Seq using Ion Torrent S5 platform is carried out to identify 'molecular portraits' in floral buds among the Cytoplasmic Genic Male Sterility (CGMS) line, its near-isogenic maintainer, and restorer lines. A total of 300, 438 and 455 genes were differentially expressed in CGMS, Maintainer, and Restorer lines respectively. The functional analysis using AgriGo revealed suppression in the pathways involved in biogenesis and metabolism of secondary metabolites which play an important role in pollen and anther maturation. Enrichment analysis showed dearth related to pollen and anther's development in sterile line, including anomalous expression of genes and transcription factors that have a role in the development of the reproductive organ, abnormal cytoskeleton formation, defects in cell wall formation. The current study found aberrant expression of DYT1, AMS and cytochrome P450 genes involved in tapetum formation, pollen development, pollen exine and anther cuticle formation associated to male sterility as well as fertility restoration of CGMS. In the current study, more numbers of DEGs were found on Chromosome D05 and A05 as compared to other chromosomes. Expression pattern analysis of fourteen randomly selected genes using qRT-PCR showed high concurrence with gene expression profile of RNA-Seq analysis accompanied by a strong correlation of 0.82. The present study provides an important support for future studies in identifying interaction between cyto-nuclear molecular portraits, to accelerate functional genomics and molecular breeding related to cytoplasmic male sterility studies in cotton.
Collapse
|