1
|
Kumar R, Kamboj H, Dhanda S, Verma A, Chander Y, Nehra K, Bhati A, Dedar RK, Sharma DK, Barua S, Tripathi BN, Sharma S, Kumar N. Identification of miR-29a as a novel biomarker for lumpy skin disease virus exposure in cattle. Virulence 2024; 15:2324711. [PMID: 38527940 PMCID: PMC10965105 DOI: 10.1080/21505594.2024.2324711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/04/2024] [Indexed: 03/27/2024] Open
Abstract
Micro RNAs (miRNAs) have been implicated in the regulation of maturation, proliferation, differentiation, and activation of immune cells. In this study, we demonstrated that miR-29a antagonizes IFN-γ production at early times post-LSDV infection in cattle. miR-29a was predicted to target upstream IFN-γ regulators, and its inhibition resulted in enhanced IFN-γ production in sensitized peripheral blood mononuclear cells (PBMCs). Further, stimulation of PBMCs with LSDV antigen exhibited lower levels of miR-29a, concomitant with a potent cell-mediated immune response (CMI), characterized by an increase in LSDV-specific CD8+ T cell counts and enhanced levels of IFN-γ, which eventually facilitated virus clearance. In addition, a few immunocompromised cattle (developed secondary LSDV infection at ~ 6 months) that failed to mount a potent cell-mediated immune response, were shown to maintain higher miR-29a levels. Furthermore, as compared to the sensitized crossbred cattle, PBMCs from sensitized Rathi (a native Indian breed) animals exhibited lower levels of miR-29a along with an increase in CD8+ T cell counts and enhanced levels of IFN-γ. Finally, we analysed that a ≥ 60% decrease in miR-29a expression levels in the PBMCs of sensitized cattle correlated with a potent CMI response. In conclusion, miR-29a expression is involved in antagonizing the IFN-γ response in LSDV-infected cattle and may serve as a novel biomarker for the acute phase of LSDV infection, as well as predicting the functionality of T cells in sensitized cattle. In addition, Rathi cattle mount a more potent CMI response against LSDV than crossbred cattle.
Collapse
Affiliation(s)
- Ram Kumar
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Himanshu Kamboj
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Shweta Dhanda
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Assim Verma
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Yogesh Chander
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Kuldeep Nehra
- Livestock Research Station, Rajasthan University of Veterinary and Animal Sciences, Nohar, Rajasthan, India
| | | | - Ramesh Kumar Dedar
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Deepak Kumar Sharma
- Department of Veterinary Microbiology, Rajasthan University of Veterinary and Animal Sciences, Udaipur, India
| | - Sanjay Barua
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Bhupendra N. Tripathi
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Shalini Sharma
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Naveen Kumar
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| |
Collapse
|
3
|
Guo Y, Huang N, Tian M, Fan M, Liu Q, Liu Z, Sun T, Huang J, Xia H, Zhao Y, Ping J. Integrated Analysis of microRNA-mRNA Expression in Mouse Lungs Infected With H7N9 Influenza Virus: A Direct Comparison of Host-Adapting PB2 Mutants. Front Microbiol 2020; 11:1762. [PMID: 32849388 PMCID: PMC7399063 DOI: 10.3389/fmicb.2020.01762] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 07/06/2020] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs) are important regulators involved in the antiviral response to influenza virus infection, however, an analytical comparison of miRNA and mRNA expression changes induced by several H7N9 host-adapting PB2 mutants remains undone. Here, miRNA microarray and transcriptome sequencing of BALB/c mouse lungs infected with A/Anhui/1/2013 (H7N9) [hereafter referred to as H7N9/AH1-PB2-627K(WT)] and mutant variants with PB2 amino acid substitutions (avian-like H7N9/AH1-PB2-627E and mammalian-adapted H7N9/AH1-PB2-627E/701N) were directly compared. The results showed that influenza virus infection induced dysregulation of numerous host cell processes. In a miRNA-mRNA network associated with immunity, changes in the expression of 38 miRNAs and 58 mRNAs were detected following influenza virus infection. Notably, the miRNAs of mmu-miR-188-5p, mmu-miR-511-5p, mmu-miR-483-5p, and mmu-miR-690 were specifically associated with the replication of the avian-like virus H7N9/AH1-PB2-627E. Likewise, the miRNAs of mmu-miR-691, mmu-miR-329-3p, and mmu-miR-144-3p were specifically associated with the mammalian-adapted virus H7N9/AH1-PB2-627E/701N. Finally, the miRNAs of mmu-miR-98-5p, mmu-miR-103-3p, mmu-miR-199a-5p, and mmu-miR-378a-3p were specifically associated with H7N9/AH1-PB2-627K(WT) virus replication. This is the first report of comparative integration analysis of miRNA-mRNA expression of these three H7N9 influenza viruses with different host-adapting PB2 mutations. Our results highlight potential miRNAs of importance in influenza virus pathogenesis.
Collapse
Affiliation(s)
- Yanna Guo
- MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing, China
| | - Nan Huang
- MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing, China
| | - Miao Tian
- MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing, China
| | - Menglu Fan
- MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing, China
| | - Qingzheng Liu
- MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing, China
| | - Zhiyuan Liu
- MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing, China
| | - Tongtong Sun
- MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing, China
| | - Jingjin Huang
- MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing, China
| | - Huizhi Xia
- MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing, China
| | - Yongzhen Zhao
- MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing, China
| | - Jihui Ping
- MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
4
|
Wu N, Yang B, Wen B, Wang T, Guo J, Qi X, Wang J. Interactions Among Expressed MicroRNAs and mRNAs in the Early Stages of Fowl Adenovirus Aerotype 4-Infected Leghorn Male Hepatocellular Cells. Front Microbiol 2020; 11:831. [PMID: 32508763 PMCID: PMC7248314 DOI: 10.3389/fmicb.2020.00831] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/07/2020] [Indexed: 01/04/2023] Open
Abstract
Hydropericardium-hepatitis syndrome (HHS) is caused by some strains of fowl adenovirus serotype 4 (FAdV-4). However, the mechanism of FAdV-4 entry is not well understood. Therefore, to investigate the changes in host cellular response at the early stage of FAdV-4 infection, a conjoint analysis of miRNA-seq and mRNA-seq was utilized with leghorn male hepatocellular (LMH) cells at 30, 60, and 120 min after FAdV-4 infection. In total, we identified 785 differentially expressed (DE) miRNAs and 725 DE mRNAs in FAdV-4-infected LMH cells. Most miRNAs and mRNAs, including gga-miR-148a-3p, gga-miR-148a-5p, gga-miR-15c-3p, CRK, SOCS3, and EGR1, have not previously been reported to be associated with FAdV-4 infection. The conjoint analysis of the obtained data identified 856 miRNA–mRNA pairs at three time points. The interaction network analysis showed that gga-miR-128-2-5p, gga-miR-7475-5p, novel_miR205, and TCF7L1 were located in the core of the network. Furthermore, the relationship between gga-miR-128-2-5p and its target OBSL1 was confirmed using a dual-luciferase reporter system and a real-time quantitative polymerase chain reaction assay. In vitro experiments revealed that both gga-miR-128-2-5p overexpression and OBSL1 loss of function inhibited FAdV-4 entry. These results suggested that gga-miR-128-2-5p plays an important role in FAdV-4 entry by targeting OBSL1. To the best of our knowledge, the present study is the first to analyze host miRNA and mRNA expression at the early stage of FAdV-4 infection; furthermore, the results of this study help to elucidate the molecular mechanisms of FAdV-4 entry.
Collapse
Affiliation(s)
- Ning Wu
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Bo Yang
- Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - Bo Wen
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Ting Wang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Jiaona Guo
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Xuefeng Qi
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Jingyu Wang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| |
Collapse
|