1
|
Wu W, Li WX, Huang CH. Phospholipase A 2, a nonnegligible enzyme superfamily in gastrointestinal diseases. Biochimie 2021; 194:79-95. [PMID: 34974145 DOI: 10.1016/j.biochi.2021.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 12/25/2021] [Accepted: 12/28/2021] [Indexed: 11/16/2022]
Abstract
Gastrointestinal tract is important for digestion, absorption, detoxification and immunity. Gastrointestinal diseases are mainly caused by the imbalance of protective and attacking factors in gastrointestinal mucosa, which can seriously harm human health. Phospholipase A2 (PLA2) is a large family closely involved in lipid metabolism and is found in almost all human cells. A growing number of studies have revealed that its metabolites are deeply implicated in various inflammatory pathways and also regulates the maintenance of numerous biological events such as dietary digestion, membrane remodeling, barrier action, and host immunity. In addition to their phospholipase activity, some members of the superfamily also have other catalytic activities. Based on the in-depth effects of phospholipase A2 on bioactive lipid metabolism and inflammatory cytokines, PLA2 and its metabolites are likely to be involved in the pathogenesis, development or prevention of gastrointestinal diseases. Therefore, this review will focus on the physiological and pathogenic roles of several important PLA2 enzymes in the gastrointestinal tract, and reveals the potential of PLA2 as a therapeutic target for gastrointestinal diseases.
Collapse
Affiliation(s)
- Wei Wu
- Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi, China
| | - Wen-Xuan Li
- Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi, China
| | - Chun-Hong Huang
- School of Basic Medical Sciences, 330006, Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
2
|
Zhu H, Ji Y, Li W, Wu M. Identification of key pathways and genes in colorectal cancer to predict the prognosis based on mRNA interaction network. Oncol Lett 2019; 18:3778-3786. [PMID: 31579079 PMCID: PMC6757265 DOI: 10.3892/ol.2019.10698] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 07/12/2019] [Indexed: 02/06/2023] Open
Abstract
The aim of the present study was to identify key genes in colorectal cancer (CRC) that could be used to reliably diagnose this disease and to explore the potential underlying mechanisms in silico. The gene expression profiles of primary human cancer datasets GSE21510 and GSE32323 were downloaded from the Gene Expression Omnibus database. The limma R software package was used to identify differentially expressed (DE) genes. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed on DE genes using the Database for Annotation, Visualization and Integrated Discovery. The Search Tool for the Retrieval of Interacting Genes/Proteins database was used to construct a protein-protein interaction (PPI) network of the DE genes. Survival rate was analyzed and visualized using The Cancer Genome Atlas (TCGA). A total of 1,126 genes were significantly DE in the present study. All DE genes were enriched in KEGG pathways including 'cell cycle', 'mineral absorption', 'pancreatic secretion', 'pathways in cancer', 'metabolic pathways', 'aldosterone-regulated sodium reabsorption' and 'Wnt signaling pathway'. A total of 5 hub genes enriched in cell cycle and tumor-associated pathways, including E2F2, SKP2, MYC, CDKN1A and CDKN2B, were significantly DE and validated between tumor and normal tissues. CDKN1A and CDKN2B were identified within the PPI network using the Molecular Complex Detection algorithm. Survival and content distribution analyses of 362 clinical samples from TCGA revealed that CDKN1A effectively predicted the prognosis of patients. The present study identified key genes and potential signaling pathways involved in CRC. These findings may provide new insights for survival assessment during the clinical diagnosis of CRC.
Collapse
Affiliation(s)
- Hengzhou Zhu
- First Clinical Medical College, Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu 210000, P.R. China
| | - Yi Ji
- First Clinical Medical College, Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu 210000, P.R. China
| | - Wenting Li
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Institute of Oncology, The First Clinical Medical College, Nanjing, Jiangsu 210000, P.R. China
| | - Mianhua Wu
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Institute of Oncology, The First Clinical Medical College, Nanjing, Jiangsu 210000, P.R. China
| |
Collapse
|
3
|
Zhou T, Lin W, Zhu Q, Renaud H, Liu X, Li R, Tang C, Ma C, Rao T, Tan Z, Guo Y. The role of PEG3 in the occurrence and prognosis of colon cancer. Onco Targets Ther 2019; 12:6001-6012. [PMID: 31413595 PMCID: PMC6662866 DOI: 10.2147/ott.s208060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 07/16/2019] [Indexed: 12/13/2022] Open
Abstract
Purpose Imprinted genes are often identified as key players in the etiology and prognosis of many tumors; however, the role they play in colon cancer remains unclear. Along with the development of big data analysis came the discovery of a wealth of genetic prognostic factors, like microsatellite instability for colon cancer, which need to be taken into consideration when evaluating new biomarkers for the disease. Methods We systematically mined public databases to find recurrence free survival (RFS)-related imprinted genes for colon cancer patients on the mRNA level by univariate and multivariate survival analyses. We then investigated the association of methylation status and microRNA expression of the targeted imprinted genes with survival rate of colon cancer patients. Lastly, in a clinical study we used qRT-PCR and immunohistochemistry to quantify mRNA and protein expression of the imprinted genes that related to RFS in our bioinformatics screening, respectively, in 20 tumor tissues compared to paired adjacent tissues. Results The results show that paternally expressed gene 3 (PEG3) is the only imprinted gene related to colon cancer patient prognosis on the mRNA level in our datasets, and high mRNA expression of PEG3 is associated with a poor prognosis. Furthermore, the methylation beta value of cg13960339, as well as the expression of 4 microRNAs, negatively correlated with PEG3 mRNA level and were correlated with the prognosis of colon cancer patients. Moreover, the expression of PEG3 mRNA in colon cancer is significantly lower, but PEG3 protein expression is significantly higher compared to that in normal tissues. Conclusion PEG3 is likely associated with the progression and prognosis of colon cancer.
Collapse
Affiliation(s)
- Ting Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China.,Human Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha 410078, People's Republic of China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha 410078, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Changsha, Hunan 410008, People's Republic of China
| | - Wei Lin
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Qiongni Zhu
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Helen Renaud
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Xiaowei Liu
- Department of Gastroenterology, Xiangya Hospital of Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Ruidong Li
- Graduate Program in Genetics, Genomics & Bioinformatics, University of California, Riverside, CA 92507, USA
| | - Cui Tang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China.,Human Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha 410078, People's Republic of China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha 410078, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Changsha, Hunan 410008, People's Republic of China
| | - Chong Ma
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China.,Human Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha 410078, People's Republic of China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha 410078, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Changsha, Hunan 410008, People's Republic of China
| | - Tai Rao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China.,Human Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha 410078, People's Republic of China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha 410078, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Changsha, Hunan 410008, People's Republic of China
| | - Zhirong Tan
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China.,Human Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha 410078, People's Republic of China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha 410078, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Changsha, Hunan 410008, People's Republic of China
| | - Ying Guo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China.,Human Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha 410078, People's Republic of China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha 410078, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Changsha, Hunan 410008, People's Republic of China
| |
Collapse
|