1
|
Jordan EN, Shirali Hossein Zade R, Pillay S, van Lent P, Abeel T, Kayser O. Integrated omics of Saccharomyces cerevisiae CENPK2-1C reveals pleiotropic drug resistance and lipidomic adaptations to cannabidiol. NPJ Syst Biol Appl 2024; 10:63. [PMID: 38821949 PMCID: PMC11143246 DOI: 10.1038/s41540-024-00382-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 05/13/2024] [Indexed: 06/02/2024] Open
Abstract
Yeast metabolism can be engineered to produce xenobiotic compounds, such as cannabinoids, the principal isoprenoids of the plant Cannabis sativa, through heterologous metabolic pathways. However, yeast cell factories continue to have low cannabinoid production. This study employed an integrated omics approach to investigate the physiological effects of cannabidiol on S. cerevisiae CENPK2-1C yeast cultures. We treated the experimental group with 0.5 mM CBD and monitored CENPK2-1C cultures. We observed a latent-stationary phase post-diauxic shift in the experimental group and harvested samples in the inflection point of this growth phase for transcriptomic and metabolomic analysis. We compared the transcriptomes of the CBD-treated yeast and the positive control, identifying eight significantly overexpressed genes with a log fold change of at least 1.5 and a significant adjusted p-value. Three notable genes were PDR5 (an ABC-steroid and cation transporter), CIS1, and YGR035C. These genes are all regulated by pleiotropic drug resistance linked promoters. Knockout and rescue of PDR5 showed that it is a causal factor in the post-diauxic shift phenotype. Metabolomic analysis revealed 48 significant spectra associated with CBD-fed cell pellets, 20 of which were identifiable as non-CBD compounds, including fatty acids, glycerophospholipids, and phosphate-salvage indicators. Our results suggest that mitochondrial regulation and lipidomic remodeling play a role in yeast's response to CBD, which are employed in tandem with pleiotropic drug resistance (PDR). We conclude that bioengineers should account for off-target product C-flux, energy use from ABC-transport, and post-stationary phase cell growth when developing cannabinoid-biosynthetic yeast strains.
Collapse
Affiliation(s)
- Erin Noel Jordan
- Technical Biochemistry, TU Dortmund University, Emil-Figge-Straße 66, 44227, Dortmund, Germany.
| | - Ramin Shirali Hossein Zade
- Delft Bioinformatics Lab, Delft University of Technology Van Mourik, Broekmanweg 6, 2628 XE, Delft, The Netherlands
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
- Leiden Center for Computational Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Stephanie Pillay
- Delft Bioinformatics Lab, Delft University of Technology Van Mourik, Broekmanweg 6, 2628 XE, Delft, The Netherlands
| | - Paul van Lent
- Delft Bioinformatics Lab, Delft University of Technology Van Mourik, Broekmanweg 6, 2628 XE, Delft, The Netherlands
| | - Thomas Abeel
- Delft Bioinformatics Lab, Delft University of Technology Van Mourik, Broekmanweg 6, 2628 XE, Delft, The Netherlands
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA, 02142, USA
| | - Oliver Kayser
- Technical Biochemistry, TU Dortmund University, Emil-Figge-Straße 66, 44227, Dortmund, Germany.
| |
Collapse
|
2
|
Su Y, Yu Z, Jin S, Ai Z, Yuan R, Chen X, Xue Z, Guo Y, Chen D, Liang H, Liu Z, Liu W. Comprehensive assessment of mRNA isoform detection methods for long-read sequencing data. Nat Commun 2024; 15:3972. [PMID: 38730241 PMCID: PMC11087464 DOI: 10.1038/s41467-024-48117-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 04/19/2024] [Indexed: 05/12/2024] Open
Abstract
The advancement of Long-Read Sequencing (LRS) techniques has significantly increased the length of sequencing to several kilobases, thereby facilitating the identification of alternative splicing events and isoform expressions. Recently, numerous computational tools for isoform detection using long-read sequencing data have been developed. Nevertheless, there remains a deficiency in comparative studies that systemically evaluate the performance of these tools, which are implemented with different algorithms, under various simulations that encompass potential influencing factors. In this study, we conducted a benchmark analysis of thirteen methods implemented in nine tools capable of identifying isoform structures from long-read RNA-seq data. We evaluated their performances using simulated data, which represented diverse sequencing platforms generated by an in-house simulator, RNA sequins (sequencing spike-ins) data, as well as experimental data. Our findings demonstrate IsoQuant as a highly effective tool for isoform detection with LRS, with Bambu and StringTie2 also exhibiting strong performance. These results offer valuable guidance for future research on alternative splicing analysis and the ongoing improvement of tools for isoform detection using LRS data.
Collapse
Affiliation(s)
- Yaqi Su
- Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China
- Centre of Biomedical Systems and Informatics of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), International Campus, Zhejiang University, Haining, 314400, Zhejiang, China
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
| | - Zhejian Yu
- Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China
- Centre of Biomedical Systems and Informatics of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), International Campus, Zhejiang University, Haining, 314400, Zhejiang, China
| | - Siqian Jin
- Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China
- Centre of Biomedical Systems and Informatics of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), International Campus, Zhejiang University, Haining, 314400, Zhejiang, China
| | - Zhipeng Ai
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310006, Zhejiang, China
| | - Ruihong Yuan
- Centre of Biomedical Systems and Informatics of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), International Campus, Zhejiang University, Haining, 314400, Zhejiang, China
| | - Xinyi Chen
- Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China
- Centre of Biomedical Systems and Informatics of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), International Campus, Zhejiang University, Haining, 314400, Zhejiang, China
| | - Ziwei Xue
- Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China
- Centre of Biomedical Systems and Informatics of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), International Campus, Zhejiang University, Haining, 314400, Zhejiang, China
| | - Yixin Guo
- Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China
- Centre of Biomedical Systems and Informatics of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), International Campus, Zhejiang University, Haining, 314400, Zhejiang, China
| | - Di Chen
- Center for Reproductive Medicine of the Second Affiliated Hospital Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China
- Centre for Regeneration and Cell Therapy of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), International Campus, Zhejiang University, Haining, 314400, Zhejiang, China
| | - Hongqing Liang
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310006, Zhejiang, China
| | - Zuozhu Liu
- Zhejiang University-Angel Align Inc. R&D Center for Intelligent Healthcare, Zhejiang University-University of Illinois at Urbana-Champaign Institute (ZJU-UIUC Institute), International Campus, Zhejiang University, Haining, 314400, Zhejiang, China
| | - Wanlu Liu
- Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China.
- Centre of Biomedical Systems and Informatics of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), International Campus, Zhejiang University, Haining, 314400, Zhejiang, China.
- Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314100, China.
- Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
3
|
Kainth AS, Haddad GA, Hall JM, Ruthenburg AJ. Merging short and stranded long reads improves transcript assembly. PLoS Comput Biol 2023; 19:e1011576. [PMID: 37883581 PMCID: PMC10629667 DOI: 10.1371/journal.pcbi.1011576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 11/07/2023] [Accepted: 10/05/2023] [Indexed: 10/28/2023] Open
Abstract
Long-read RNA sequencing has arisen as a counterpart to short-read sequencing, with the potential to capture full-length isoforms, albeit at the cost of lower depth. Yet this potential is not fully realized due to inherent limitations of current long-read assembly methods and underdeveloped approaches to integrate short-read data. Here, we critically compare the existing methods and develop a new integrative approach to characterize a particularly challenging pool of low-abundance long noncoding RNA (lncRNA) transcripts from short- and long-read sequencing in two distinct cell lines. Our analysis reveals severe limitations in each of the sequencing platforms. For short-read assemblies, coverage declines at transcript termini resulting in ambiguous ends, and uneven low coverage results in segmentation of a single transcript into multiple transcripts. Conversely, long-read sequencing libraries lack depth and strand-of-origin information in cDNA-based methods, culminating in erroneous assembly and quantitation of transcripts. We also discover a cDNA synthesis artifact in long-read datasets that markedly impacts the identity and quantitation of assembled transcripts. Towards remediating these problems, we develop a computational pipeline to "strand" long-read cDNA libraries that rectifies inaccurate mapping and assembly of long-read transcripts. Leveraging the strengths of each platform and our computational stranding, we also present and benchmark a hybrid assembly approach that drastically increases the sensitivity and accuracy of full-length transcript assembly on the correct strand and improves detection of biological features of the transcriptome. When applied to a challenging set of under-annotated and cell-type variable lncRNA, our method resolves the segmentation problem of short-read sequencing and the depth problem of long-read sequencing, resulting in the assembly of coherent transcripts with precise 5' and 3' ends. Our workflow can be applied to existing datasets for superior demarcation of transcript ends and refined isoform structure, which can enable better differential gene expression analyses and molecular manipulations of transcripts.
Collapse
Affiliation(s)
- Amoldeep S. Kainth
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois, United States of America
| | - Gabriela A. Haddad
- Committee on Genetics, Genomics and Systems Biology, The University of Chicago, Chicago, Illinois, United States of America
| | - Johnathon M. Hall
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois, United States of America
| | - Alexander J. Ruthenburg
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois, United States of America
- Committee on Genetics, Genomics and Systems Biology, The University of Chicago, Chicago, Illinois, United States of America
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
4
|
Vachon A, Seo GE, Patel NH, Coffin CS, Marinier E, Eyras E, Osiowy C. Hepatitis B virus serum RNA transcript isoform composition and proportion in chronic hepatitis B patients by nanopore long-read sequencing. Front Microbiol 2023; 14:1233178. [PMID: 37645229 PMCID: PMC10461054 DOI: 10.3389/fmicb.2023.1233178] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/31/2023] [Indexed: 08/31/2023] Open
Abstract
Introduction Serum hepatitis B virus (HBV) RNA is a promising new biomarker to manage and predict clinical outcomes of chronic hepatitis B (CHB) infection. However, the HBV serum transcriptome within encapsidated particles, which is the biomarker analyte measured in serum, remains poorly characterized. This study aimed to evaluate serum HBV RNA transcript composition and proportionality by PCR-cDNA nanopore sequencing of samples from CHB patients having varied HBV genotype (gt, A to F) and HBeAg status. Methods Longitudinal specimens from 3 individuals during and following pregnancy (approximately 7 months between time points) were also investigated. HBV RNA extracted from 16 serum samples obtained from 13 patients (73.3% female, 84.6% Asian) was sequenced and serum HBV RNA isoform detection and quantification were performed using three bioinformatic workflows; FLAIR, RATTLE, and a GraphMap-based workflow within the Galaxy application. A spike-in RNA variant (SIRV) control mix was used to assess run quality and coverage. The proportionality of transcript isoforms was based on total HBV reads determined by each workflow. Results All chosen isoform detection workflows showed high agreement in transcript proportionality and composition for most samples. HBV pregenomic RNA (pgRNA) was the most frequently observed transcript isoform (93.8% of patient samples), while other detected transcripts included pgRNA spliced variants, 3' truncated variants and HBx mRNA, depending on the isoform detection method. Spliced variants of pgRNA were primarily observed in HBV gtB, C, E, or F-infected patients, with the Sp1 spliced variant detected most frequently. Twelve other pgRNA spliced variant transcripts were identified, including 3 previously unidentified transcripts, although spliced isoform identification was very dependent on the workflow used to analyze sequence data. Longitudinal sampling among pregnant and post-partum antiviral-treated individuals showed increasing proportions of 3' truncated pgRNA variants over time. Conclusions This study demonstrated long-read sequencing as a promising tool for the characterization of the serum HBV transcriptome. However, further studies are needed to better understand how serum HBV RNA isoform type and proportion are linked to CHB disease progression and antiviral treatment response.
Collapse
Affiliation(s)
- Alicia Vachon
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Grace E. Seo
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Nishi H. Patel
- Department of Medicine and Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Carla S. Coffin
- Department of Medicine and Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Eric Marinier
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Eduardo Eyras
- EMBL Australia Partner Laboratory Network at the Australian National University, Canberra, ACT, Australia
- The John Curtin School of Medical Research, ANU College of Health and Medicine, Canberra, ACT, Australia
- Catalan Institution for Research and Advanced Studies, Barcelona, Spain
- Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Carla Osiowy
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| |
Collapse
|
5
|
Rueca M, Giombini E, Messina F, Bartolini B, Di Caro A, Capobianchi MR, Gruber CE. The Easy-to-Use SARS-CoV-2 Assembler for Genome Sequencing: Development Study. JMIR BIOINFORMATICS AND BIOTECHNOLOGY 2022; 3:e31536. [PMID: 35309411 PMCID: PMC8924907 DOI: 10.2196/31536] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 11/02/2021] [Accepted: 02/05/2022] [Indexed: 12/19/2022]
Abstract
Background Early sequencing and quick analysis of the SARS-CoV-2 genome have contributed to the understanding of the dynamics of COVID-19 epidemics and in designing countermeasures at a global level. Objective Amplicon-based next-generation sequencing (NGS) methods are widely used to sequence the SARS-CoV-2 genome and to identify novel variants that are emerging in rapid succession as well as harboring multiple deletions and amino acid–changing mutations. Methods To facilitate the analysis of NGS sequencing data obtained from amplicon-based sequencing methods, here, we propose an easy-to-use SARS-CoV-2 genome assembler: the Easy-to-use SARS-CoV-2 Assembler (ESCA) pipeline. Results Our results have shown that ESCA could perform high-quality genome assembly from Ion Torrent and Illumina raw data and help the user in easily correct low-coverage regions. Moreover, ESCA includes the possibility of comparing assembled genomes of multisample runs through an easy table format. Conclusions In conclusion, ESCA automatically furnished a variant table output file, fundamental to rapidly recognizing variants of interest. Our pipeline could be a useful method for obtaining a complete, rapid, and accurate analysis even with minimal knowledge in bioinformatics.
Collapse
Affiliation(s)
- Martina Rueca
- Laboratory of Virology and Biosafety Laboratories National Institute for Infectious Diseases "Lazzaro Spallanzani" Istituto di Ricovero e Cura a Carattere Scientifico Rome Italy
| | - Emanuela Giombini
- Laboratory of Virology and Biosafety Laboratories National Institute for Infectious Diseases "Lazzaro Spallanzani" Istituto di Ricovero e Cura a Carattere Scientifico Rome Italy
| | - Francesco Messina
- Laboratory of Microbiology and Biological Bank National Institute for Infectious Diseases "Lazzaro Spallanzani" Istituto di Ricovero e Cura a Carattere Scientifico Rome Italy
| | - Barbara Bartolini
- Laboratory of Microbiology and Biological Bank National Institute for Infectious Diseases "Lazzaro Spallanzani" Istituto di Ricovero e Cura a Carattere Scientifico Rome Italy
| | - Antonino Di Caro
- Laboratory of Microbiology and Biological Bank National Institute for Infectious Diseases "Lazzaro Spallanzani" Istituto di Ricovero e Cura a Carattere Scientifico Rome Italy.,UniCamillus - Saint Camillus International University of Health Sciences Roma Italy
| | - Maria Rosaria Capobianchi
- Laboratory of Virology and Biosafety Laboratories National Institute for Infectious Diseases "Lazzaro Spallanzani" Istituto di Ricovero e Cura a Carattere Scientifico Rome Italy.,UniCamillus - Saint Camillus International University of Health Sciences Roma Italy
| | - Cesare Em Gruber
- Laboratory of Virology and Biosafety Laboratories National Institute for Infectious Diseases "Lazzaro Spallanzani" Istituto di Ricovero e Cura a Carattere Scientifico Rome Italy
| |
Collapse
|
6
|
Allemand E, Ango F. Analysis of Splicing Regulation by Third-Generation Sequencing. Methods Mol Biol 2022; 2537:81-95. [PMID: 35895260 DOI: 10.1007/978-1-0716-2521-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In Metazoa, the diversity of transcripts produced by the RNA Polymerase II is generated essentially through post-transcriptional processing of the nascent transcripts. The regulation of exon inclusion by alternative splicing is one of the main sources of this diversity, which leads to the expansion of the proteome. The portfolio of alternative transcripts remains largely underestimated. Improvement of the sequencing technologies has enhanced the characterization of RNA isoforms and led to the perpetual incrementation of gene expression diversity. Here, we describe a high throughput approach to assess in-depth the splicing regulation of target gene(s) using the third-generation sequencing (TGS) technologies.
Collapse
Affiliation(s)
- Eric Allemand
- Laboratory of cellular and molecular mechanisms of hematological disorders and therapeutic implications, Institut IMAGINE, INSERM, Paris, France.
| | - Fabrice Ango
- INM, University of Montpellier, INSERM, Montpellier, France
| |
Collapse
|
7
|
Al Kadi M, Jung N, Okuzaki D. UNAGI: Yeast Transcriptome Reconstruction and Gene Discovery Using Nanopore Sequencing. Methods Mol Biol 2022; 2477:79-89. [PMID: 35524113 DOI: 10.1007/978-1-0716-2257-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Computational approaches are the main approaches used in genome annotation. However, accuracy is low. Untranslated regions are not identified, complex isoforms are not predicted correctly and discovery rate of noncoding RNA is low. RNA-seq has revolutionized transcriptome reconstruction over the last decade. However, fragmentation included in cDNA sequencing leads to information loss, requiring transcripts to be assembled and reconstructed, thus affecting the accuracy of reconstructed transcriptome. Recently, long-read sequencing has been introduced with technologies such as Oxford Nanopore sequencing. cDNA is sequenced directly without fragmentation producing long reads that don't need to be assembled keeping the transcript structure intact and increasing the accuracy of transcriptome reconstruction.Here we present a protocol and a pipeline to reconstruct the transcriptome of compact genomes including yeasts. It involves generating full-length cDNA and using Oxford Nanopore ligation-based sequencing kit to sequence multiple samples in the same run. The pipeline (1) strands the generated long reads, (2) corrects the reads by mapping them to the reference genome, (3) identifies transcripts including 5'UTR and 3'UTR, (4) profiles the isoforms, filtering out artifacts resulting from low accuracy in sequencing, and (5) improves accuracy of provided annotations. Using long reads improves the accuracy of transcriptome reconstruction and helps in discovering a significant number of novel RNAs.
Collapse
Affiliation(s)
- Mohamad Al Kadi
- Department of Bacterial Infections, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Nicolas Jung
- Department of Infection Metagenomics, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Daisuke Okuzaki
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan.
- Single Cell Genomics, Human Immunology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.
| |
Collapse
|