1
|
Simonetti A, Bernardi E, Sani G. Novel Advancements in COVID-19 and Neuroscience. J Pers Med 2024; 14:143. [PMID: 38392577 PMCID: PMC10890030 DOI: 10.3390/jpm14020143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 01/26/2024] [Indexed: 02/24/2024] Open
Abstract
From an initial cluster of cases reported in Wuhan, the SARS-Cov-2 infection has since spread globally, causing a pandemic that began on 11 March 2020 [...].
Collapse
Affiliation(s)
- Alessio Simonetti
- Department of Neurosciences, Sensory Organs and Chest, Section of Psychiatry, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Evelina Bernardi
- Department of Neurosciences, Sensory Organs and Chest, Section of Psychiatry, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Gabriele Sani
- Department of Neurosciences, Sensory Organs and Chest, Section of Psychiatry, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Neurosciences, Sensory Organs and Chest, Section of Psychiatry, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
2
|
Alsaeed M, Alhamid G, Tombuloglu H, Kabanja JH, Karagoz A, Tombuloglu G, Rabaan AA, Al-Suhaimi E, Unver T. Ultrasensitive and fast detection of SARS-CoV-2 using RT-LAMP without pH-dependent dye. Funct Integr Genomics 2024; 24:16. [PMID: 38242999 DOI: 10.1007/s10142-024-01297-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/21/2024]
Abstract
This study investigates the performance of reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay for the colorimetric detection of SARS-CoV-2 using fluorometric dye, namely, calcein. The detection limit (LoD) with the N-ID1 primer set resulted in superior performance, corresponding to ~ 2 copies/reaction or ~ 0.1 copies/μL of the RNA sample. The color development can be observed by the naked eye, using an ultraviolet (UV) transilluminator or a hand-UV light without the requirement of expensive devices. The average time-to-reaction (TTR) value was 26.2 min in high-copy number samples, while it was about 50 min in rRT-PCR. A mobile application was proposed to quantify the positive and negative results based on the three-color spaces (RGB, Lab, and HSB). Compared to rRT-PCR (n = 67), this assay allows fast and sensitive visual detection of SARS-CoV-2, with high sensitivity (90.9%), selectivity (100%), and accuracy (94.03%). Besides, the assay was sensitive regardless of variants. Since this assay uses a fluorescent dye for visual observation, it can be easily adapted in RT-LAMP assays with high sensitivity. Thus, it can be utilized in low-source centers and field testing such as conferences, sports meetings, refugee camps, companies, and schools.
Collapse
Affiliation(s)
- Moneerah Alsaeed
- Department of Genetics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
| | - Galyah Alhamid
- Department of Genetics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
| | - Huseyin Tombuloglu
- Department of Genetics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia.
| | - Juma H Kabanja
- Department of Pathology & Laboratory Medicine, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| | - Aysel Karagoz
- Quality Assurance Department, Turk Pharmaceutical and Serum Ind. Inc., Ankara, Turkey
| | - Guzin Tombuloglu
- Department of Biophysics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
| | - Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran, 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur, 22610, Pakistan
| | - Ebtesam Al-Suhaimi
- Vice Presidency for Scientific Research and Innovation, Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Turgay Unver
- Ficus Biotechnology, Ankara, Turkey
- Faculty of Engineering, Ostim Technical University, 06374, Ankara, Turkey
| |
Collapse
|
3
|
Xu Y, Zhang M, Wang G, Yang J. Identification of six genes associated with COVID-19-related circadian rhythm dysfunction by integrated bioinformatic analysis. Funct Integr Genomics 2023; 23:282. [PMID: 37624450 DOI: 10.1007/s10142-023-01198-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/01/2023] [Accepted: 08/01/2023] [Indexed: 08/26/2023]
Abstract
Patients with coronavirus disease 2019 (COVID-19) might cause long-term burden of insomnia, while the common pathogenic mechanisms are not elucidated. The gene expression profiles of COVID-19 patients and healthy controls were retrieved from the GEO database, while gene set related with circadian rhythm was obtained from GeneCards database. Seventy-six shared genes were screened and mainly enriched in cell cycle, cell division, and cell proliferation, and 6 hub genes were found out including CCNA2, CCNB1, CDK1, CHEK1, MKI67, and TOP2A, with positive correlation to plasma cells. In the TF-gene regulatory network, NFYA, NFIC, MEF2A, and FOXC1 showed high connectivity with hub genes. This study identified six hub genes and might provide new insights into pathogenic mechanisms and novel clinical management strategies.
Collapse
Affiliation(s)
- Yanfeng Xu
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, 95 Yong An Road, Xicheng District, Beijing, 100050, China
| | - Mingyu Zhang
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, 95 Yong An Road, Xicheng District, Beijing, 100050, China
| | - Guanyun Wang
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, 95 Yong An Road, Xicheng District, Beijing, 100050, China
| | - Jigang Yang
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, 95 Yong An Road, Xicheng District, Beijing, 100050, China.
| |
Collapse
|
4
|
Liu Y, Chen X, Yang JY, Guo ZJ, Wu Q, Zhang LD, Zhou XW. RNA-seq analysis reveals an immunomodulatory peptide from highland barley activating RAW264.7 macrophages via TNF/NF-κB signaling pathway. Funct Integr Genomics 2023; 23:253. [PMID: 37488420 DOI: 10.1007/s10142-023-01180-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/26/2023]
Abstract
Highland barley (HB) is an important cereal crop distributed in the plateau region. Bioactive peptides (BAPs) derived from cereal proteins have shown biological functions. However, the knowledge of highland barley peptide (HBP) is limited. This study aims to explore the immunomodulatory activity of HBP and the relationship between immunomodulatory activity and related gene expression through RNA-seq. Firstly, HBP is isolated from protease hydrolysates of HB protein, yielding 12.04% of crude HB protein. The molecular weight of HBP is about 1702 Da analyzed by gel filtration chromatography, and HBP has a specific amino acid sequence as Gln-Pro-Gln-Gln-Pro-Phe-Pro-Gln (QPQPFPQ) analyzed by LC-MS. Besides, HBP contains 42.20% hydrophobic amino acids and 10.86% basic amino acids. Next, the immunomodulatory activity of HBP in vitro shows that HBP enhances the phagocytosis of RAW264.7 macrophages, promotes nitric oxide (NO) production and the mRNA expression of pro-inflammatory genes including tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β), and inducible nitric oxide synthase (iNOS), and decreases the mRNA expression of anti-inflammatory gene, transforming growth factor β1 (TGF-β1). RNA-seq analysis reveals TNF and nuclear factor kappa B (NF-κB) pathways are upregulated, and RT-qPCR is performed to verify RNA-seq analysis. In conclusion, HBP activates RAW264.7 macrophages via TNF/NF-κB signaling pathway. HBP, as a significant immunomodulatory peptide, might be a promising resource for future functional foods.
Collapse
Affiliation(s)
- Yan Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xin Chen
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Jia-Yi Yang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhi Jian Guo
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qin Wu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Li-Da Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xuan-Wei Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
5
|
Singhvi N, Talwar C, Mahanta U, Kaur J, Mondal K, Ahmad N, Tyagi I, Sharma G, Gupta V. Comparative genomics and integrated system biology approach unveiled undirected phylogeny patterns, mutational hotspots, functional patterns, and molecule repurposing for monkeypox virus. Funct Integr Genomics 2023; 23:231. [PMID: 37432480 DOI: 10.1007/s10142-023-01168-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/08/2023] [Accepted: 07/03/2023] [Indexed: 07/12/2023]
Abstract
Monkeypox is a viral zoonosis with symptoms that are reminiscent of those experienced in previous smallpox cases. The GSAID database (Global Initiative on Sharing Avian Influenza Data) was used to assess 630 genomes of MPXV. The phylogenetic study revealed six primary clades, as well as a smaller percentage in radiating clades. Individual clades that make up various nationalities may have formed as a result of a particular SNP hotspot type that mutated in a specific population. The most significant mutation based on a mutational hotspot analysis was found at G3729A and G5143A. The gene ORF138, which encodes the Ankyrin repeat (ANK) protein, was found to have the most mutations. This protein mediates molecular recognition via protein-protein interactions. It was shown that 243 host proteins interacted with 10 monkeypox proteins identified as the hub proteins E3, SPI2, C5, K7, E8, G6, N2, B14, CRMB, and A41 through 262 direct connections. The interaction with chemokine system-related proteins provides further evidence that the monkeypox virus suppresses human proteins to facilitate its survival against innate immunity. Several FDA-approved molecules were evaluated as possible inhibitors of F13, a significant envelope protein on the membrane of extracellular versions of the virus. A total of 2500 putative ligands were individually docked with the F13 protein. The interaction between the F13 protein and these molecules may help prevent the monkeypox virus from spreading. After being confirmed by experiments, these putative inhibitors could have an impact on the activity of these proteins and be used in monkeypox treatments.
Collapse
Affiliation(s)
- Nirjara Singhvi
- Department of Zoology, School of Allied Sciences, Dev Bhoomi Uttarakhand University, Dehradun, 248007, India
| | - Chandni Talwar
- Department of Zoology, University of Delhi, Delhi, India, 110007
| | - Utkarsha Mahanta
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Bengaluru, Karnataka, 560100, India
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Telangana, 502284, India
| | - Jasvinder Kaur
- Department of Zoology, Gargi College, University of Delhi, New Delhi, 110049, India
| | - Krishnendu Mondal
- Ministry of Environment, Forest and Climate Change, Integrated Regional Office, Dehradun, 248001, India
| | - Nabeel Ahmad
- Department of Biotechnology, School of Allied Sciences, Dev Bhoomi Uttarakhand University, Dehradun, 248007, India
| | - Inderjeet Tyagi
- Centre of DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India,, Kolkata, 700053, India
| | - Gaurav Sharma
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Bengaluru, Karnataka, 560100, India
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Telangana, 502284, India
| | - Vipin Gupta
- Ministry of Environment, Forest and Climate Change, Integrated Regional Office, Dehradun, 248001, India.
| |
Collapse
|
6
|
Liang Z, Zheng X, Wang Y, Chu K, Gao Y. Using system biology and bioinformatics to identify the influences of COVID-19 co-infection with influenza virus on COPD. Funct Integr Genomics 2023; 23:175. [PMID: 37221323 DOI: 10.1007/s10142-023-01091-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 05/25/2023]
Abstract
Coronavirus disease 2019 (COVID-19) has speedily increased mortality globally. Although they are risk factors for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), less is known about the common molecular mechanisms behind COVID-19, influenza virus A (IAV), and chronic obstructive pulmonary disease (COPD). This research used bioinformatics and systems biology to find possible medications for treating COVID-19, IAV, and COPD via identifying differentially expressed genes (DEGs) from gene expression datasets (GSE171110, GSE76925, GSE106986, and GSE185576). A total of 78 DEGs were subjected to functional enrichment, pathway analysis, protein-protein interaction (PPI) network construct, hub gene extraction, and other potentially relevant disorders. Then, DEGs were discovered in networks including transcription factor (TF)-gene connections, protein-drug interactions, and DEG-microRNA (miRNA) coregulatory networks by using NetworkAnalyst. The top 12 hub genes were MPO, MMP9, CD8A, HP, ELANE, CD5, CR2, PLA2G7, PIK3R1, SLAMF1, PEX3, and TNFRSF17. We found that 44 TFs-genes, as well as 118 miRNAs, are directly linked to hub genes. Additionally, we searched the Drug Signatures Database (DSigDB) and identified 10 drugs that could potentially treat COVID-19, IAV, and COPD. Therefore, we evaluated the top 12 hub genes that could be promising DEGs for targeted therapy for SARS-CoV-2 and identified several prospective medications that may benefit COPD patients with COVID-19 and IAV co-infection.
Collapse
Affiliation(s)
- Zihao Liang
- Clinical Research Center, the Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xudong Zheng
- Department of Immunology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yuan Wang
- Clinical Research Center, the Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Kai Chu
- Department of Vaccine Clinical Evaluation, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China.
| | - Yanan Gao
- Department of Immunology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
7
|
Bioinformatics analysis based on high-throughput sequencing data to identify hub genes related to different clinical types of COVID-19. Funct Integr Genomics 2023; 23:71. [PMID: 36856850 PMCID: PMC9975444 DOI: 10.1007/s10142-023-00998-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023]
Abstract
This article aims to explore hub genes related to different clinical types of cases with COVID-19 and predict the therapeutic drugs related to severe cases. The expression profile of GSE166424 was divided into four data sets according to different clinical types of COVID-19 and then calculated the differential expression genes (DEGs). The specific genes of four clinical types of COVID-19 were obtained by Venn diagram and conducted enrichment analysis, protein-protein interaction (PPI) networks analysis, screening hub genes, and ROC curve analysis. The hub genes related to severe cases were verified in GSE171110, their RNA-specific expression tissues were obtained from the HPA database, and potential therapeutic drugs were predicted through the DGIdb database. There were 536, 266, 944, and 506 specific genes related to asymptomatic infections, mild, moderate, and severe cases, respectively. The hub genes of severe specific genes were AURKB, BRCA1, BUB1, CCNB1, CCNB2, CDC20, CDC6, KIF11, TOP2A, UBE2C, and RPL11, and also differentially expressed in GSE171110 (P < 0.05), and their AUC values were greater than 0.955. The RNA tissue specificity of AURKB, CDC6, KIF11, UBE2C, CCNB2, CDC20, TOP2A, BUB1, and CCNB1 specifically enhanced on lymphoid tissue; CCNB2, CDC20, TOP2A, and BUB1 specifically expressed on the testis. Finally, 55 drugs related to severe COVID-19 were obtained from the DGIdb database. Summary, AURKB, BRCA1, BUB1, CCNB1, CCNB2, CDC20, CDC6, KIF11, TOP2A, UBE2C, and RPL11 may be potential diagnostic biomarkers for severe COVID-19, which may affect immune and male reproductive systems. 55 drugs may be potential therapeutic drugs for severe COVID-19.
Collapse
|