1
|
Ghotaslou A, Azizsoltani A, Baghaei K, Alizadeh E. Harnessing HEK293 cell-derived exosomes for hsa-miR-365a-3p delivery: Potential application in hepatocellular carcinoma therapy. Heliyon 2024; 10:e29333. [PMID: 38638994 PMCID: PMC11024613 DOI: 10.1016/j.heliyon.2024.e29333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 03/30/2024] [Accepted: 04/05/2024] [Indexed: 04/20/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most frequent form of liver malignancy, and curing it is very challenging. Restoring tumor suppressor microRNAs could trigger the initiation of cellular anticancer mechanisms. Exosomes are nanosized biocarriers capable of fusing with cell membranes and delivering their cargo. The main goal of the current study was to explore the potential of human embryonic kidney cells (HEK293) cell-derived exosomes to provide an anticancer therapy based on the restoration of tumor suppressor miR-365a downregulated in HepG2 cells. To accomplish this aim, exosomes were isolated from the HEK293 cell line culture and characterized, enriched by Homo sapiens (hsa) miR-365a-3p mimics. Exosomes enabled an efficient loading and intracellular delivery of hsa-miR-365a mimics, which translated into G0/G1 cell cycle arrest, induction of oxidative stress, reduction of migration capacity, and high apoptosis rate. The findings indicate that the delivery of miR-365a-3p by HEK293-derived exosomes may act as an innovative and effective therapeutic strategy against HCC.
Collapse
Affiliation(s)
- Armita Ghotaslou
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arezou Azizsoltani
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kaveh Baghaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Effat Alizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Wang Y, Ji L, Ji C, Wang F. Multi-omics approaches establishing histone modification based prognostic model in glioma patients and further verification of the carcinogenesis mechanism. Funct Integr Genomics 2023; 23:307. [PMID: 37730879 DOI: 10.1007/s10142-023-01229-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/25/2023] [Accepted: 09/06/2023] [Indexed: 09/22/2023]
Abstract
Glioblastoma (GBM) emerges as the most common malignant brain tumor. Histone modifications, as an epigenetic regulatory mechanism of gene expression, are closely associated with malignant tumors. Gene set related to histone modification was extracted from the MSigDB database, and scored by the function of AddModuleScore. Pearson correlation analysis was utilized using the "rcorr" function of "Hmisc" R package. Genes were screened out using the LASSO Cox analysis. TCGA-GBM and CGGA_array_301 cohorts were employed for constructing model and validation. We calculated immune infiltration scores using microenvironment cell populations counter (MCPcounter), single-sample gene set enrichment analysis (ssGSEA), and xCell algorithms. U87-MG and CHG-5 cell lines were utilized to evaluate expression level of TMEM176A by western blot (WB). Transwell, EDU, colony formation analysis (CFA), and CKK-8 assays were conducted to investigate cell proliferation and migration rate. The malignant cells in GBM patients exhibited notable activation in the TGF-β and hypoxia pathway. Histone modifications were associated with adhesion and neuron development in GBM. We identified a model with five significant genes, namely NBEAL1, AEBP1, TMEM176A, FASTK, and CD81, with prognostic efficacy. Additionally, we observed increased infiltration of T cells and CD8+ T cells in the high-risk (HR) group. 5-Fluorouracil_1073 and Taselisib_1561 were predicted as potential treatment options for GBM patients, while ABT737_1910 and Wnt_C59-1622 exhibited superior response in GBM patients of the HR group. A spike in the TP53 mutation rate was observed in the HR group. TMEM176A played a role in regulating cell proliferation and migration in vitro. We presented a novel prognostic model for patients with GBM, based on histone modification-related genes. In addition, we identified the crucial role of the TMEM176A in the regulation of GBM carcinogenic phenotypes for the first time.
Collapse
Affiliation(s)
- Yunhui Wang
- Department of Neurosurgery, Deqing People's Hospital, Deqing, Zhejiang Province, China
| | - LiKang Ji
- Department of Neurosurgery, Deqing People's Hospital, Deqing, Zhejiang Province, China
| | - Chunfeng Ji
- Department of Neurosurgery, Deqing People's Hospital, Deqing, Zhejiang Province, China
| | - Fan Wang
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Ouhai, Wenzhou, Zhejiang, 325000, China.
| |
Collapse
|
3
|
Wu J, Yang F, Zhao M, Xiao H, Chen Y, Liu X, Zheng D. Antler-derived microRNA PC-5p-1090 inhibits HCC cell proliferation, migration, and invasion by targeting MARCKS, SMARCAD1, and SOX9. Funct Integr Genomics 2023; 23:156. [PMID: 37165199 DOI: 10.1007/s10142-023-01089-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/12/2023]
Abstract
The capability of microRNAs (miRNAs) to regulate gene expression across species has opened new avenues for miRNA-based therapeutics. Here, we investigated the potential of PC-5p-1090 (miR-PC-1090), a miRNA found in deer antlers, to control the malignant phenotypes of hepatocellular carcinoma (HCC) cells. Using Cell Counting Kit-8 and transwell assays, we found that heterologous expression of miR-PC-1090 inhibited HCC cell proliferation, migration, and invasion. Bioinformatics analysis indicated that predicted miR-PC-1090 targets, including MARCKS, SMARCAD1, and SOX9, were significantly elevated in HCC tissues, and their high expressions were associated with poor overall survival of HCC patients. Moreover, mechanistic investigations revealed that miR-PC-1090 promoted the degradation of MARCKS and SMARCAD1 mRNAs and hindered the translation of SOX9 mRNA by recognizing their 3' untranslated regions. Subsequent loss-of-function and rescue experiments confirmed the involvement of MARCKS, SMARCAD1, and SOX9 in miR-PC-1090-suppressed HCC cell proliferation, migration, and invasion. Notably, MARCKS knockdown induced the downregulation of phosphorylated MARCKS and a corresponding upregulation of phosphorylated AKT in HCC. Conversely, miR-PC-1090 repressed MARCKS phosphorylation and effectively circumvented the activation of the PI3K/AKT pathway. Furthermore, miR-PC-1090 regulates the Wnt/β-catenin pathway through SMARCAD1- and SOX9-mediated reduction of β-catenin expression. Overall, our results illustrate the tumor-suppressive activity and molecular mechanism of antler-derived miR-PC-1090 in HCC cells, indicating its potential as a multiple-target agent for HCC treatment.
Collapse
Affiliation(s)
- Jin Wu
- Laboratory of Genetics and Molecular Biology, College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, China
| | - Fan Yang
- Laboratory of Genetics and Molecular Biology, College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, China
| | - Mindie Zhao
- Laboratory of Genetics and Molecular Biology, College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, China
| | - Hui Xiao
- Departments of Central Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, 215008, Jiangsu, China
| | - Yanxia Chen
- College of Ecology-Environment Engineering, Qinghai University, Xining, 810016, Qinghai, China
| | - Xuedong Liu
- Laboratory of Genetics and Molecular Biology, College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, China.
| | - Dong Zheng
- Laboratory of Genetics and Molecular Biology, College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, China.
| |
Collapse
|