1
|
Tan S, Li S, Xia L, Jiang X, Ren Z, Peng Q, Peng M, Yang W, Xu X, Oyang L, Shen M, Wang J, Li H, Wu N, Tang Y, Liao Q, Lin J, Zhou Y. Long non‑coding RNA ABHD11‑AS1 inhibits colorectal cancer progression through interacting with EGFR to suppress the EGFR/ERK signaling pathway. Int J Oncol 2025; 66:20. [PMID: 39950321 PMCID: PMC11844336 DOI: 10.3892/ijo.2025.5726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 01/15/2025] [Indexed: 02/23/2025] Open
Abstract
Long non‑coding (lnc)RNAs participate in colorectal cancer (CRC) occurrence and progression. The present study aimed to investigate whether lncRNA ABHD11‑AS1 regulates malignant biological behavior of CRC cells. Bioinformatic analysis, reverse transcription‑quantitative PCR and in situ hybridization revealed that ABHD11‑AS1 expression was decreased in CRC samples and associated with an unfavorable prognosis. ABHD11‑AS1 overexpression significantly decreased proliferation, migration and invasion of CRC cells, whereas ABHD11‑AS1 inhibition had the opposite effects. ABHD11‑AS1 interacted with EGFR to inhibit EGFR phosphorylation and attenuate EGFR/ERK signaling, which in turn suppressed the malignant biological behavior of CRC cells. The tumor suppressor function of ABHD11‑AS1 was attenuated by the EGFR agonist NSC228155. Finally, resveratrol (RSV) inhibited CRC cell proliferation, migration and invasion, which may be associated with RSV‑induced decrease in SPT6 homolog, histone chaperone and transcription elongation factor protein expression and increase in ABHD11‑AS1 transcript levels. ABHD11‑AS1 inhibited the phosphorylation of EGFR and decreased EGFR/ERK signaling by interacting with EGFR, thereby delaying the progression of CRC. The ABHD11‑AS1/EGFR/ERK axis may be a novel therapeutic target for preventing CRC progression.
Collapse
Affiliation(s)
- Shiming Tan
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, Changsha, Hunan 410013, P.R. China
- Hunan Engineering Research Center of Tumor Organoid Technology and Application, Public Service Platform of Tumor Organoid Technology, Changsha, Hunan 410013, P.R. China
| | - Shizhen Li
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, Changsha, Hunan 410013, P.R. China
- Hunan Engineering Research Center of Tumor Organoid Technology and Application, Public Service Platform of Tumor Organoid Technology, Changsha, Hunan 410013, P.R. China
| | - Longzheng Xia
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, Changsha, Hunan 410013, P.R. China
- Hunan Engineering Research Center of Tumor Organoid Technology and Application, Public Service Platform of Tumor Organoid Technology, Changsha, Hunan 410013, P.R. China
| | - Xianjie Jiang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, Changsha, Hunan 410013, P.R. China
- Hunan Engineering Research Center of Tumor Organoid Technology and Application, Public Service Platform of Tumor Organoid Technology, Changsha, Hunan 410013, P.R. China
| | - Zongyao Ren
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, Changsha, Hunan 410013, P.R. China
- Hunan Engineering Research Center of Tumor Organoid Technology and Application, Public Service Platform of Tumor Organoid Technology, Changsha, Hunan 410013, P.R. China
| | - Qiu Peng
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, Changsha, Hunan 410013, P.R. China
- Hunan Engineering Research Center of Tumor Organoid Technology and Application, Public Service Platform of Tumor Organoid Technology, Changsha, Hunan 410013, P.R. China
| | - Mingjing Peng
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, Changsha, Hunan 410013, P.R. China
- Hunan Engineering Research Center of Tumor Organoid Technology and Application, Public Service Platform of Tumor Organoid Technology, Changsha, Hunan 410013, P.R. China
| | - Wenjuan Yang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, Changsha, Hunan 410013, P.R. China
| | - Xuemeng Xu
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, Changsha, Hunan 410013, P.R. China
- Hunan Engineering Research Center of Tumor Organoid Technology and Application, Public Service Platform of Tumor Organoid Technology, Changsha, Hunan 410013, P.R. China
| | - Linda Oyang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, Changsha, Hunan 410013, P.R. China
- Hunan Engineering Research Center of Tumor Organoid Technology and Application, Public Service Platform of Tumor Organoid Technology, Changsha, Hunan 410013, P.R. China
| | - Mengzhou Shen
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, Changsha, Hunan 410013, P.R. China
- Hunan Engineering Research Center of Tumor Organoid Technology and Application, Public Service Platform of Tumor Organoid Technology, Changsha, Hunan 410013, P.R. China
| | - Jiewen Wang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, Changsha, Hunan 410013, P.R. China
- Hunan Engineering Research Center of Tumor Organoid Technology and Application, Public Service Platform of Tumor Organoid Technology, Changsha, Hunan 410013, P.R. China
| | - Haofan Li
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, Changsha, Hunan 410013, P.R. China
| | - Nayiyuan Wu
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, Changsha, Hunan 410013, P.R. China
- Hunan Engineering Research Center of Tumor Organoid Technology and Application, Public Service Platform of Tumor Organoid Technology, Changsha, Hunan 410013, P.R. China
| | - Yanyan Tang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, Changsha, Hunan 410013, P.R. China
- Hunan Engineering Research Center of Tumor Organoid Technology and Application, Public Service Platform of Tumor Organoid Technology, Changsha, Hunan 410013, P.R. China
| | - Qianjin Liao
- Department of Oncology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan 410005, P.R. China
| | - Jinguan Lin
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, Changsha, Hunan 410013, P.R. China
- Hunan Engineering Research Center of Tumor Organoid Technology and Application, Public Service Platform of Tumor Organoid Technology, Changsha, Hunan 410013, P.R. China
| | - Yujuan Zhou
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, Changsha, Hunan 410013, P.R. China
- Hunan Engineering Research Center of Tumor Organoid Technology and Application, Public Service Platform of Tumor Organoid Technology, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
2
|
Meng H, Yang R, Lin Q, Du W, Chu Z, Cao Y, Du M, Zhao Y, Xu J, Yang Z, Xie X, He L, Huang C. Isorhapontigenin inhibition of basal muscle-invasive bladder cancer attributed to its downregulation of SNHG1 and DNMT3b. BMC Cancer 2024; 24:737. [PMID: 38879516 PMCID: PMC11180402 DOI: 10.1186/s12885-024-12490-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 06/10/2024] [Indexed: 06/19/2024] Open
Abstract
BACKGROUND Bladder cancer (BC) is among the most prevalent malignant urothelial tumors globally, yet the prognosis for patients with muscle-invasive bladder cancer (MIBC) remains dismal, with a very poor 5-year survival rate. Consequently, identifying more effective and less toxic chemotherapeutic alternatives is critical for enhancing clinical outcomes for BC patients. Isorhapontigenin (ISO), a novel stilbene isolated from a Gnetum found in certain provinces of China, has shown potential as an anticancer agent due to its diverse anticancer activities. Despite its promising profile, the specific anticancer effects of ISO on BC and the underlying mechanisms are still largely unexplored. METHODS The anchorage-independent growth, migration and invasion of BC cells were assessed by soft agar and transwell invasion assays, respectively. The RNA levels of SOX2, miR-129 and SNHG1 were quantified by qRT-PCR, while the protein expression levels were validated through Western blotting. Furthermore, methylation-specific PCR was employed to assess the methylation status of the miR-129 promoter. Functional assays utilized siRNA knockdown, plasmid-mediated overexpression, and chemical inhibition approaches. RESULTS Our study demonstrated that ISO treatment significantly reduced SNHG1 expression in a dose- and time-dependent manner in BC cells, leading to the inhibition of anchorage-independent growth and invasion in human basal MIBC cells. This effect was accompanied by the downregulation of MMP-2 and MMP-9 and the upregulation of the tumor suppressor PTEN. Further mechanistic investigations revealed that SOX2, a key upstream regulator of SNHG1, played a crucial role in mediating the ISO-induced transcriptional suppression of SNHG1. Additionally, we found that ISO treatment led to a decrease in DNMT3b protein levels, which in turn mediated the hypomethylation of the miR-129 promoter and the subsequent suppression of SOX2 mRNA 3'-UTR activity, highlighting a novel pathway through which ISO exerts its anticancer effects. CONCLUSIONS Collectively, our study highlights the critical role of SNHG1 downregulation as well as its upstream DNMT3b/miR-129/SOX2 axis in mediating ISO anticancer activity. These findings not only elucidate the mechanism of action of ISO but also suggest novel targets for BC therapy.
Collapse
Affiliation(s)
- Hao Meng
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325053, China
| | - Rui Yang
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Qianqian Lin
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325053, China
| | - Wenqi Du
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Zheng Chu
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yaxin Cao
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325053, China
| | - Mengxiang Du
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325053, China
| | - Yazhen Zhao
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325053, China
| | - Jiheng Xu
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Ziyi Yang
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325053, China
| | - Xiaomin Xie
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Lijiong He
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325053, China
| | - Chuanshu Huang
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325053, China.
| |
Collapse
|
3
|
Zhu Y, Zhou M, Li C, Kong W, Hu Y. Gastric cancer with brain metastasis: from molecular characteristics and treatment. Front Oncol 2024; 14:1310325. [PMID: 38577333 PMCID: PMC10991736 DOI: 10.3389/fonc.2024.1310325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/12/2024] [Indexed: 04/06/2024] Open
Abstract
Gastric cancer is one of the cancers with increasing incidence and ranks fourth globally among the most frequent causes of cancer-related mortality. Early gastric cancer is often asymptomatic or presents with atypical symptoms, and the majority of patients present with advanced disease upon diagnosis. Brain metastases are present in approximately 1% of gastric cancer patients at the time of diagnosis, which significantly contributed to the overall mortality of the disease worldwide. Conventional therapies for patients with brain metastases remain limited and the median overall survival of patients is only 8 months in advanced cases. Recent studies have improved our understanding of the molecular mechanisms underlying gastric cancer brain metastases, and immunotherapy has become an important treatment option in combination with radiotherapy, chemotherapy, targeted therapy and surgery. This review aims to provide insight into the cellular processes involved in gastric cancer brain metastases, discuss diagnostic approaches, evaluate the integration of immune checkpoint inhibitors into treatment and prognosis, and explore the predictive value of biomarkers in immunotherapy.
Collapse
Affiliation(s)
- Yingze Zhu
- Department of Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Miao Zhou
- Department of Oncology, Tang Shan Central Hospital, Tangshan, China
| | - Congling Li
- School of Clinical Medicine, Affiliated Hospital, North China University of Science and Technology, Tangshan, China
| | - Wenyue Kong
- School of Clinical Medicine, Affiliated Hospital, North China University of Science and Technology, Tangshan, China
| | - Yuning Hu
- School of Clinical Medicine, Affiliated Hospital, North China University of Science and Technology, Tangshan, China
| |
Collapse
|
4
|
Wu W, Li Y, Wu X, Liang J, You W, He X, Feng Q, Li T, Jia X. Carnosic acid nanocluster-based framework combined with PD-1 inhibitors impeded tumorigenesis and enhanced immunotherapy in hepatocellular carcinoma. Funct Integr Genomics 2024; 24:5. [PMID: 38182693 DOI: 10.1007/s10142-024-01286-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/15/2023] [Accepted: 01/01/2024] [Indexed: 01/07/2024]
Abstract
Clinically, the immune checkpoint inhibitor anti-PD-1 antibody has shown a certain effect in the treatment of hepatocellular carcinoma (HCC), which is limited to a small number of patients with HCC. This study aims to reveal whether carnosic acid nanocluster-based framework (CA-NBF) has a sensitization effect on anti-PD-1 antibody in the treatment of HCC at the cellular and animal levels. MHCC97H cells were treated with CA-NBF, anti-PD-1 and their combination. The effects of CA-NBF and anti-PD-1 on cell proliferation, cell cycle, apoptosis, invasion, and migration were evaluated by MTT assay, flow cytometry, and scratch test. The effects of CA-NBF and anti-PD-1 on Wnt/β-catenin signaling pathway in MHCC97H cells were detected. A BALB/C nude mouse model of hepatocellular carcinoma was established, and the tumor growth was observed at different time points. The expression of cytotoxic T lymphocyte and helper T lymphocyte markers CD8 and CD4 in tumor tissues was detected by immunohistochemistry. Western blotting was used to detect the Wnt/β-catenin signaling pathway proteins (Wnt-3a, β-catenin, and GSK-3β) level in tumor tissues after CA-NBF and anti-PD-1 treatment. CA-NBF activity was significantly higher than CA, which could prominently reduce the proliferation, migration and invasion of MHCC97H cells and enhance apoptosis by inactivating Wnt/β-catenin signaling pathway. CA-NBF combined with anti-PD-1 antibody further enhanced cell proliferation, migration, invasion and pro-apoptosis but had no significant effect on Wnt/β-catenin signaling pathway. CA-NBF in vivo improved the tumor response to PD1 immune checkpoint blockade in HCC, manifested by reducing tumor size and weight, promoting CD4 and CD8 expression. CA-NBF combined with anti-PD-1 have stronger immunomodulatory and anticancer effects without increasing biological toxicity.
Collapse
Affiliation(s)
- Wenhua Wu
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, Xi'wu Road,, Xi'an, 710004, Shaanxi, China.
| | - Yaping Li
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, Xi'wu Road,, Xi'an, 710004, Shaanxi, China
| | - Xiaokang Wu
- Clinical Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Junrong Liang
- Department of Gastroenterology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Weiming You
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
- Department of Tumor and Immunology in Precision Medical Institute, Western China Science and Technology Innovation Port, Xi'an, 710004, Shaanxi, China
| | - Xinyuan He
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, Xi'wu Road,, Xi'an, 710004, Shaanxi, China
| | - Qinhui Feng
- Department of Infectious Diseases, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Ting Li
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, Xi'wu Road,, Xi'an, 710004, Shaanxi, China
| | - Xiaoli Jia
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, Xi'wu Road,, Xi'an, 710004, Shaanxi, China.
| |
Collapse
|
5
|
Liu S, Rong Y, Tang M, Zhao Q, Li C, Gao W, Yang X. The Functions and Mechanisms of Long Non-coding RNA SNHGs in Gastric Cancer. Comb Chem High Throughput Screen 2024; 27:2639-2653. [PMID: 37842903 DOI: 10.2174/0113862073268591230928100922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/08/2023] [Accepted: 09/01/2023] [Indexed: 10/17/2023]
Abstract
Gastric cancer (GC) is one of the most common malignancies worldwide. Despite significant advancements in surgical and adjuvant treatments, patient prognosis remains unsatisfactory. Long non-coding RNAs (lncRNAs) are a class of RNA molecules that lack protein-coding capacity but can engage in the malignant biological behaviors of tumors through various mechanisms. Among them, small nucleolar host genes (SNHGs) represent a subgroup of lncRNAs. Studies have revealed their involvement not only in gastric cancer cell proliferation, invasion, migration, epithelial- mesenchymal transition (EMT), and apoptosis but also in chemotherapy resistance and tumor stemness. This review comprehensively summarizes the biological functions, molecular mechanisms, and clinical significance of SNHGs in gastric cancer. It provides novel insights into potential biomarkers and therapeutic targets for the exploration of gastric cancer.
Collapse
Affiliation(s)
- Songhua Liu
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou 730000, China
| | - Yao Rong
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou 730000, China
| | - Mingzheng Tang
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou 730000, China
| | - Qiqi Zhao
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, 750004, China
| | - Chunyan Li
- The First Clinical Medical School of Lanzhou University, Lanzhou, 730000, China
| | - Wenbin Gao
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou 730000, China
| | - Xiaojun Yang
- The First Clinical Medical School of Lanzhou University, Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, 730000, China
- Gansu key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology, Gansu Provincial Hospital, Lanzhou, 730000, China
- Gansu Research Center of Prevention and Control Project for Digestive Oncology, Gansu Provincial Hospital, Lanzhou, 730000, China
- Key Laboratory of Gastrointestinal Tumor Diagnosis and Treatment of National Health and Health Commission, Lanzhou, 730000, China
| |
Collapse
|
6
|
Tian Y, Han W, Fu L, Zhang J, Zhou X. IGF2 is upregulated by its antisense RNA to potentiate pancreatic cancer progression. Funct Integr Genomics 2023; 23:348. [PMID: 38036690 DOI: 10.1007/s10142-023-01277-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/24/2023] [Accepted: 11/26/2023] [Indexed: 12/02/2023]
Abstract
Pancreatic cancer is a deadly cancer. More and more long noncoding RNAs (lncRNAs) have received confirmation to be dysregulated in tumors and exert the regulatory function. Studies have suggested that lncRNA insulin-like growth factor 2 antisense RNA (IGF2-AS) participates in the development of some cancers. Thus, we attempted to clarify its function in pancreatic cancer. Reverse-transcription quantitative polymerase chain reaction was applied for testing IGF2-AS expression in pancreatic cancer cells. Colony formation and Transwell wound experiments were applied for determining cell proliferative, migratory, and invasive capabilities. The alteration of epithelial-mesenchymal transition (EMT)-related gene level was tested via western blot. The mice model was established for measuring the tumor growth and metastasis. RIP validated the interaction of RNAs. IGF2-AS displays high expression in pancreatic cancer cells. IGF2-AS depletion repressed PC cell proliferative, migratory, invasive capabilities, and EMT process. Furthermore, pancreatic cancer tumor growth and metastasis were also inhibited by IGF2-AS depletion. Additionally, IGF2-AS positively regulated IGF2 level via recruiting HNRNPC. IGF2 overexpression counteracted the functions of IGF2-AS deficiency on pancreatic cancer cell behaviors. Moreover, IGF2R deletion was found to inhibit the positive effect of IGF2 on pancreatic cancer progression. IGF2-AS potentiates pancreatic cancer cell proliferation, tumor growth, and metastasis by recruiting HNRNPC via the IGF2-IGF2R regulatory pathway. These discoveries might offer a novel insight for treatment of PC, which may facilitate targeted therapies of PC in clinical practice.
Collapse
Affiliation(s)
- Yuan Tian
- Department of General Surgery, Ningbo Medical Center Lihuili Hospital, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, 315100, China
| | - Wenwen Han
- Department of Emergency, Ningbo Medical Center Lihuili Hospital, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, 315100, China
| | - Long Fu
- Department of General Surgery, Ningbo Medical Center Lihuili Hospital, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, 315100, China
| | - Jing Zhang
- Department of General Surgery, Ningbo Medical Center Lihuili Hospital, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, 315100, China
| | - Xinhua Zhou
- Department of General Surgery, Ningbo Medical Center Lihuili Hospital, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, 315100, China.
| |
Collapse
|
7
|
Zeng H, Zhou S, Cai W, Kang M, Zhang P. LncRNA SNHG1: role in tumorigenesis of multiple human cancers. Cancer Cell Int 2023; 23:198. [PMID: 37684619 PMCID: PMC10492323 DOI: 10.1186/s12935-023-03018-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/06/2023] [Indexed: 09/10/2023] Open
Abstract
Small nucleolar RNA host gene 1 (SNHG1) is an important member of the SNHG family. This family is composed of a group of host genes that can be processed into small nucleolar RNAs and play important biological functions. In an oncogenic role, the SNHG1 expression is increased in various cancers, which has immense application prospects in the diagnosis, treatment, and prognosis of malignant tumors. In this review, we have summarized the role and molecular mechanism of SNHG1 in the development of various cancers. In addition, we have emphasized the clinical significance of SNHG1 in cancers in our article. This molecule is expected to be a new marker for potential usage in the diagnosis, prognosis, and treatment of cancer.
Collapse
Affiliation(s)
- Huang Zeng
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Shouang Zhou
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Weiqiang Cai
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Mingqiang Kang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, 29 Xinquan Road, Gulou, Fuzhou, 350001, China.
| | - Peipei Zhang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, 29 Xinquan Road, Gulou, Fuzhou, 350001, China.
| |
Collapse
|
8
|
Huldani H, Gandla K, Asiri M, Romero-Parra RM, Alsalamy A, Hjazi A, Najm MAA, Fawaz A, Hussien BM, Singh R. A comprehensive insight into the role of small nucleolar RNAs (snoRNAs) and SNHGs in human cancers. Pathol Res Pract 2023; 249:154679. [PMID: 37567032 DOI: 10.1016/j.prp.2023.154679] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 08/13/2023]
Abstract
Long non-coding RNAs (lncRNAs), which comprise most non-coding RNAs (ncRNAs), have recently become a focus of cancer research. How many functional ncRNAs exist is still a matter of debate. Although insufficient evidence supports that most lncRNAs function as transcriptional by-products, it is widely known that an increasing number of lncRNAs play essential roles in cells. Small nucleolar RNAs (snoRNAs), 60-300 nucleotides in length, have been better studied than long non-coding RNAs (lncRNAs) and are predominantly present in the nucleolus. Most snoRNAs are encoded in introns of protein- and non-protein-coding genes called small nucleolar RNA host genes (SNHGs). In this article, we explore the biology and characteristics of SNHGs and their role in developing human malignancies. In addition, we provide an update on the ability of these snoRNAs to serve as prognostic and diagnostic variables in various forms of cancer.
Collapse
Affiliation(s)
- Huldani Huldani
- Department of Physiology, Faculty of Medicine, Lambung Mangkurat University, Banjarmasin, South Kalimantan, Indonesia
| | - Kumaraswamy Gandla
- Department of Pharmaceutical Analysis, Chaitanya Deemed to be University, Hanamkonda, India.
| | - Mohammed Asiri
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | | | - Ali Alsalamy
- College of Medical Technology, Imam Ja'afar Al-Sadiq University, Al-Muthanna 66002, Iraq
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mazin A A Najm
- Pharmaceutical Chemistry Department, College of Pharmacy, Al-Ayen University, Thi-Qar, Iraq
| | - Albab Fawaz
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | - Beneen M Hussien
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Rajesh Singh
- Uttaranchal Institute of Technology, Uttaranchal University, Dehradun 248007, India
| |
Collapse
|
9
|
Zielske SP, Cackowski FC. Critical analysis of the hypothesized SNHG1/miR-195-5p/YAP1 axis. Funct Integr Genomics 2022; 23:2. [PMID: 36526938 PMCID: PMC9758073 DOI: 10.1007/s10142-022-00930-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 10/31/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022]
Affiliation(s)
- Steven P Zielske
- Department of Oncology, Wayne State University and Karmanos Cancer Institute, Detroit, MI, 48201, USA
| | - Frank C Cackowski
- Department of Oncology, Wayne State University and Karmanos Cancer Institute, Detroit, MI, 48201, USA.
| |
Collapse
|