1
|
Rubino F, Alvarez-Breckenridge C, Akdemir K, Conley AP, Bishop AJ, Wang WL, Lazar AJ, Rhines LD, DeMonte F, Raza SM. Prognostic molecular biomarkers in chordomas: A systematic review and identification of clinically usable biomarker panels. Front Oncol 2022; 12:997506. [PMID: 36248987 PMCID: PMC9557284 DOI: 10.3389/fonc.2022.997506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction and objective Despite the improvements in management and treatment of chordomas over time, the risk of disease recurrence remains high. Consequently, there is a push to develop effective systemic therapeutics for newly diagnosed and recurrent disease. In order to tailor treatment for individual chordoma patients and develop effective surveillance strategies, suitable clinical biomarkers need to be identified. The objective of this study was to systematically review all prognostic biomarkers for chordomas reported to date in order to classify them according to localization, study design and statistical analysis. Methods Using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we systematically reviewed published studies reporting biomarkers that correlated with clinical outcomes. We included time-to-event studies that evaluated biomarkers in skull base or spine chordomas. To be included in our review, the study must have analyzed the outcomes with univariate and/or multivariate methods (log-rank test or a Cox-regression model). Results We included 68 studies, of which only 5 were prospective studies. Overall, 103 biomarkers were analyzed in 3183 patients. According to FDA classification, 85 were molecular biomarkers (82.5%) mainly located in nucleus and cytoplasm (48% and 27%, respectively). Thirty-four studies analyzed biomarkers with Cox-regression model. Within these studies, 32 biomarkers (31%) and 22 biomarkers (21%) were independent prognostic factors for PFS and OS, respectively. Conclusion Our analysis identified a list of 13 biomarkers correlating with tumor control rates and survival. The future point will be gathering all these results to guide the clinical validation for a chordoma biomarker panel. Our identified biomarkers have strengths and weaknesses according to FDA's guidelines, some are affordable, have a low-invasive collection method and can be easily measured in any health care setting (RDW and D-dimer), but others molecular biomarkers need specialized assay techniques (microRNAs, PD-1 pathway markers, CDKs and somatic chromosome deletions were more chordoma-specific). A focused list of biomarkers that correlate with local recurrence, metastatic spread and survival might be a cornerstone to determine the need of adjuvant therapies.
Collapse
Affiliation(s)
- Franco Rubino
- Department of Neurosurgery, Division of surgery, The University of Texas MD Anderson Cancer Center, University of Texas, Houston, TX, United States
| | - Christopher Alvarez-Breckenridge
- Department of Neurosurgery, Division of surgery, The University of Texas MD Anderson Cancer Center, University of Texas, Houston, TX, United States
| | - Kadir Akdemir
- Department of Neurosurgery, Division of surgery, The University of Texas MD Anderson Cancer Center, University of Texas, Houston, TX, United States
| | - Anthony P. Conley
- Department of Sarcoma Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, University of Texas, Houston, TX, United States
| | - Andrew J. Bishop
- Department of Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, University of Texas, Houston, TX, United States
| | - Wei-Lien Wang
- Department of Pathology, Division of Pathology-Lab Medicine Division, The University of Texas MD Anderson Cancer Center, University of Texas, Houston, TX, United States
| | - Alexander J. Lazar
- Department of Pathology, Division of Pathology-Lab Medicine Division, The University of Texas MD Anderson Cancer Center, University of Texas, Houston, TX, United States
| | - Laurence D. Rhines
- Department of Neurosurgery, Division of surgery, The University of Texas MD Anderson Cancer Center, University of Texas, Houston, TX, United States
| | - Franco DeMonte
- Department of Neurosurgery, Division of surgery, The University of Texas MD Anderson Cancer Center, University of Texas, Houston, TX, United States
| | - Shaan M. Raza
- Department of Neurosurgery, Division of surgery, The University of Texas MD Anderson Cancer Center, University of Texas, Houston, TX, United States
| |
Collapse
|
2
|
Zou MX, Lv GH, Zhang QS, Wang SF, Li J, Wang XB. Prognostic Factors in Skull Base Chordoma: A Systematic Literature Review and Meta-Analysis. World Neurosurg 2018; 109:307-327. [DOI: 10.1016/j.wneu.2017.10.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 10/01/2017] [Accepted: 10/03/2017] [Indexed: 01/07/2023]
|
3
|
Trapani V, Bonaldo P, Corallo D. Role of the ECM in notochord formation, function and disease. J Cell Sci 2017; 130:3203-3211. [PMID: 28883093 DOI: 10.1242/jcs.175950] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The notochord is a midline structure common to all chordate animals; it provides mechanical and signaling cues for the developing embryo. In vertebrates, the notochord plays key functions during embryogenesis, being a source of developmental signals that pattern the surrounding tissues. It is composed of a core of vacuolated cells surrounded by an epithelial-like sheath of cells that secrete a thick peri-notochordal basement membrane made of different extracellular matrix (ECM) proteins. The correct deposition and organization of the ECM is essential for proper notochord morphogenesis and function. Work carried out in the past two decades has allowed researchers to dissect the contribution of different ECM components to this embryonic tissue. Here, we will provide an overview of these genetic and mechanistic studies. In particular, we highlight the specific functions of distinct matrix molecules in regulating notochord development and notochord-derived signals. Moreover, we also discuss the involvement of ECM synthesis and its remodeling in the pathogenesis of chordoma, a malignant bone cancer that originates from remnants of notochord remaining after embryogenesis.
Collapse
Affiliation(s)
- Valeria Trapani
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy
| | - Paolo Bonaldo
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy .,CRIBI Biotechnology Center, University of Padova, Padova, 35131, Italy
| | - Diana Corallo
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy .,Pediatric Research Institute, Città della Speranza, 35127 Padova, Italy
| |
Collapse
|
5
|
Liu N, Zhou B, Zhu G. Potential Role of Reversion-Inducing Cysteine-Rich Protein with Kazal Motifs (RECK) in Regulation of Matrix Metalloproteinases (MMPs) Expression in Periodontal Diseases. Med Sci Monit 2016; 22:1936-8. [PMID: 27272560 PMCID: PMC4913808 DOI: 10.12659/msm.896546] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Periodontal diseases are characterized by pathological destruction of extracellular matrix (ECM) of periodontal tissues. Matrix metalloproteinases (MMPs) are a significant part of the degradation of ECM. However, the regulation of MMPs expression level in periodontal diseases is as yet undetermined. RECK (reversion-inducing cysteine-rich protein with Kazal motifs), a novel membrane-anchored inhibitor of MMPs, could regulate the expressions of MMP-2, 9 and MT1-MMP as a cell surface-signaling molecule. Thus, we propose that RECK may play an important role in regulating MMPs in the ECM degradation of periodontal diseases. The RECK/MMPs signaling pathway could provide a new approach for prevention and treatment of RECK in periodontal diseases by blocking MMPs.
Collapse
Affiliation(s)
- Nian Liu
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Bin Zhou
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Guangxun Zhu
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| |
Collapse
|
6
|
Yakkioui Y, van Overbeeke JJ, Santegoeds R, van Engeland M, Temel Y. Chordoma: the entity. Biochim Biophys Acta Rev Cancer 2014; 1846:655-69. [PMID: 25193090 DOI: 10.1016/j.bbcan.2014.07.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 07/28/2014] [Accepted: 07/30/2014] [Indexed: 01/08/2023]
Abstract
Chordomas are malignant tumors of the axial skeleton, characterized by their locally invasive and slow but aggressive growth. These neoplasms are presumed to be derived from notochordal remnants with a molecular alteration preceding their malignant transformation. As these tumors are most frequently observed on the skull base and sacrum, patients suffering from a chordoma present with debilitating neurological disease, and have an overall 5-year survival rate of 65%. Surgical resection with adjuvant radiotherapy is the first-choice treatment modality in these patients, since chordomas are resistant to conventional chemotherapy. Even so, management of chordomas can be challenging, as chordoma patients often present with recurrent disease. Recent advances in the understanding of the molecular events that contribute to the development of chordomas are promising; the most novel finding being the identification of brachyury in the disease process. Here we present an overview of the current paradigms and summarize relevant research findings.
Collapse
Affiliation(s)
- Youssef Yakkioui
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands; Department of Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands.
| | - Jacobus J van Overbeeke
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands; Department of Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Remco Santegoeds
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands; Department of Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Manon van Engeland
- Department of Pathology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Yasin Temel
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands; Department of Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|