1
|
Garbin E, Nicolè L, Magrini S, Ceccaroni Y, Denaro L, Basaldella L, Rossetto M. Glioblastoma in NF1: A Unique Entity-A Literature Review Focusing on Surgical Implication and Our Experience. Curr Oncol 2025; 32:242. [PMID: 40277798 PMCID: PMC12025599 DOI: 10.3390/curroncol32040242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 03/30/2025] [Accepted: 04/10/2025] [Indexed: 04/26/2025] Open
Abstract
Glioblastoma in patients affected by NF1 germline mutation (NF1-associated GBM) represents a unique heterogeneous clinical and pathological entity. We have reviewed the few cases reported in the literature and they seem to have a better response to standard therapy and overall survival than GBM in the non-NF1 population. We present two cases of long-survival NF1 patients with GBM. Case 1 was a 38-year-old woman with cerebellar GBM who underwent surgical asportation and the Stupp protocol many times with an overall survival of 117 months. Case 2 was a 47-year-old woman with GBM in the eloquent area of the right frontal lobe; she underwent surgical asportation and the Stupp protocol with an overall survival of 25 months. The data analysis demonstrates that NF1-associated GBM patients could be considered long-term survivors.
Collapse
Affiliation(s)
- Elisa Garbin
- Academic Neurosurgery, Department of Neurosciences, University of Padova, 35128 Padova, PD, Italy;
| | - Lorenzo Nicolè
- Unit of Pathology, Angel Hospital, 30174 Mestre, VE, Italy;
| | - Salima Magrini
- Unit of Neurosurgery, Department of Neurosciences, Angel Hospital, 30174 Mestre, VE, Italy; (S.M.); (Y.C.); (L.B.)
| | - Yuri Ceccaroni
- Unit of Neurosurgery, Department of Neurosciences, Angel Hospital, 30174 Mestre, VE, Italy; (S.M.); (Y.C.); (L.B.)
| | - Luca Denaro
- Academic Neurosurgery, Department of Neurosciences, University of Padova, 35128 Padova, PD, Italy;
| | - Luca Basaldella
- Unit of Neurosurgery, Department of Neurosciences, Angel Hospital, 30174 Mestre, VE, Italy; (S.M.); (Y.C.); (L.B.)
| | - Marta Rossetto
- Unit of Neurosurgery, Department of Neurosciences, Angel Hospital, 30174 Mestre, VE, Italy; (S.M.); (Y.C.); (L.B.)
| |
Collapse
|
2
|
Woo PYM, Law THP, Lee KKY, Chow JSW, Li LF, Lau SSN, Chan TKT, Ho JMK, Lee MWY, Chan DTM, Poon WS. Repeat resection for recurrent glioblastoma in the temozolomide era: a real-world multi-centre study. Br J Neurosurg 2024; 38:1381-1389. [PMID: 36654527 DOI: 10.1080/02688697.2023.2167931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 12/28/2022] [Accepted: 01/08/2023] [Indexed: 01/20/2023]
Abstract
INTRODUCTION In contrast to standard-of-care treatment of newly diagnosed glioblastoma, there is limited consensus on therapy upon disease progression. The role of resection for recurrent glioblastoma remains unclear. This study aimed to identify factors for overall survival (OS) and post-progression survival (PPS) as well as to validate an existing prediction model. METHODS This was a multi-centre retrospective study that reviewed consecutive adult patients from 2006 to 2019 that received a repeat resection for recurrent glioblastoma. The primary endpoint was PPS defined as from the date of second surgery until death. RESULTS 1032 glioblastoma patients were identified and 190 (18%) underwent resection for recurrence. Patients that had second surgery were more likely to be younger (<70 years) (adjusted OR: 0.3; 95% CI: 0.1-0.6), to have non-eloquent region tumours (aOR: 1.7; 95% CI: 1.1-2.6) and received temozolomide chemoradiotherapy (aOR: 0.2; 95% CI: 0.1-0.4). Resection for recurrent tumour was an independent predictor for OS (aOR: 1.5; 95% CI: 1.3-1.7) (mOS: 16.9 months versus 9.8 months). For patients that previously received temozolomide chemoradiotherapy and subsequent repeat resection (137, 13%), the median PPS was 9.0 months (IQR: 5.0-17.5). Independent PPS predictors for this group were a recurrent tumour volume of >50cc (aOR: 0.6; 95% CI: 0.4-0.9), local recurrence (aOR: 1.7; 95% CI: 1.1-3.3) and 5-ALA fluorescence-guided resection during second surgery (aOR: 1.7; 95% CI: 1.1-2.8). A National Institutes of Health Recurrent Glioblastoma Multiforme Scale score of 0 conferred an mPPS of 10.0 months, a score of 1-2, 9.0 months and a score of 3, 4.0 months (log-rank test, p-value < 0.05). CONCLUSION Surgery for recurrent glioblastoma can be beneficial in selected patients and carries an acceptable morbidity rate. The pattern of recurrence influenced PPS and the NIH Recurrent GBM Scale was a reliable prognostication tool.
Collapse
Affiliation(s)
- Peter Y M Woo
- Department of Neurosurgery, Kwong Wah Hospital, Hong Kong, China
| | - Tiffany H P Law
- Department of Neurosurgery, Kwong Wah Hospital, Hong Kong, China
| | - Kelsey K Y Lee
- Department of Neurosurgery, Kwong Wah Hospital, Hong Kong, China
| | - Joyce S W Chow
- Department of Neurosurgery, Queen Elizabeth Hospital, Hong Kong, China
| | - Lai-Fung Li
- Division of Neurosurgery, Department of Surgery, Queen Mary Hospital, Hong Kong, China
| | - Sarah S N Lau
- Division of Neurosurgery, Department of Surgery, Queen Mary Hospital, Hong Kong, China
| | - Tony K T Chan
- Department of Neurosurgery, Princess Margaret Hospital, Hong Kong, China
| | - Jason M K Ho
- Department of Neurosurgery, Tuen Mun Hospital, Hong Kong, China
| | - Michael W Y Lee
- Department of Neurosurgery, Pamela Youde Nethersole Eastern Hospital, Hong Kong, China
| | - Danny T M Chan
- Division of Neurosurgery, Department of Surgery, Prince of Wales Hospital, Hong Kong, China
| | - Wai-Sang Poon
- Division of Neurosurgery, Department of Surgery, Prince of Wales Hospital, Hong Kong, China
| |
Collapse
|
3
|
Rogers S, Gross M, Ermis E, Cosgun G, Baumert BG, Mader T, Schroeder C, Lomax N, Alonso S, Ademaj A, Lazeroms T, Lee SY, Mayinger M, Mamot C, Schwyzer L, Schubert GA, Riesterer O. Re-irradiation for recurrent glioblastoma: a pattern of care analysis. BMC Neurol 2024; 24:462. [PMID: 39587462 PMCID: PMC11590342 DOI: 10.1186/s12883-024-03954-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 11/07/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND 90% of glioblastomas (GBM) relapse within two years of diagnosis. In contrast to the initial setting, there is no standard management for recurrent disease and options include hypofractionated stereotactic re-irradiation (re-mHSRT). The aims of this study were to investigate re-mHSRT practice in Swiss neuro-oncology centres. METHODS A survey of 18 questions regarding re-irradiation for GBM was created and distributed electronically (SurveyMonkey, USA) to 11 radiation oncologists in Switzerland specialising in brain tumours. We evaluated the clinical outcomes of a multicentre series of patients treated with an established re-mHSRT schedule to benchmark these against the literature and investigated the radiological patterns of relapse after re-mHSRT. RESULTS 8 of 11 (73%) radiation oncologists responded to the survey and re-irradiation practice was heterogeneous. The 10 × 3.5 Gy schedule (RTOG 1205, BRIOChe trials) was used by 5/8 respondents and 47/50 patients with recurrent GBM treated with re-mHSRT with this schedule in daily practice were included in the analysis. The median time to re-mHSRT following completion of adjuvant RT was 23.3 (7-224) months. The median PTV at re-mHSRT was 22.0 cm3 (0.9-190). Combined CTV + PTV margins ranged from 0 to 10 mm and median prescription isodose was 80% (67-100). 14/47 (30%) patients received temozolomide and four (8.5%) continued bevacizumab concomitantly. On multivariable analysis, concomitant systemic therapy predicted for progression-free survival (PFS), HR 2.87 (95% CI 1-03-7.96), p = 0.042. Median PFS following re-mHSRT was 6.6 (0.2-92.5) months and 26/47 patients (55%) received subsequent systemic therapy. The median overall survival (OS) following recurrence was 11.8 months (1.5-92.5), similar to the 10.8 months in the literature with the same schedule. The six-month OS rate was 37/47 (79%), which compares well with the 73% reported in a meta-analysis of 50 publications employing various schedules. In a subgroup analysis of 36/47 (79%) patients with MR follow-up after re-mHSRT, 8/36 (22%) had no radiological evidence of tumour progression at a median follow-up of 9.4 months. 21/28 (75%) radiological relapses were in-field, two were marginal and five were out of field. CONCLUSIONS Re-mHSRT with 10 × 3.5 Gy can achieve local control in selected patients with recurrent GBM.
Collapse
Affiliation(s)
- Susanne Rogers
- Radiation Oncology Center Mittelland, Kantonsspital Aarau, Aarau, Switzerland.
| | - Markus Gross
- Department of Radiation Oncology, University Hospital Basel, Basel, Switzerland
| | - Ekin Ermis
- Department of Radiation Oncology, Inselspital, University Hospital Bern, Bern, Switzerland
| | - Gizem Cosgun
- Department of Radiation Oncology, Inselspital, University Hospital Bern, Bern, Switzerland
| | - Brigitta G Baumert
- Department of Radiation Oncology, Kantonsspital Graubünden, Chur, Switzerland
| | - Thomas Mader
- Department of Radiation Oncology, Kantonsspital Graubünden, Chur, Switzerland
| | - Christina Schroeder
- Department of Radiation Oncology, Kantonsspital Winterthur, Winterthur, Switzerland
- Department of Neurology, Kantonsspital Aarau, Aarau, Switzerland
| | - Nicoletta Lomax
- Radiation Oncology Center Mittelland, Kantonsspital Aarau, Aarau, Switzerland
| | - Sara Alonso
- Radiation Oncology Center Mittelland, Kantonsspital Aarau, Aarau, Switzerland
| | - Adela Ademaj
- Radiation Oncology Center Mittelland, Kantonsspital Aarau, Aarau, Switzerland
| | - Tessa Lazeroms
- Radiation Oncology Center Mittelland, Kantonsspital Aarau, Aarau, Switzerland
| | - Seok-Yun Lee
- Department of Medical Oncology, Kantonsspital Aarau, Aarau, Switzerland
| | - Michael Mayinger
- Department of Radiation Oncology, University Hospital Zurich, Zurich, Switzerland
| | - Christoph Mamot
- Department of Medical Oncology, Kantonsspital Aarau, Aarau, Switzerland
| | - Lucia Schwyzer
- Department of Neurosurgery, Kantonsspital Aarau, Aarau, Switzerland
| | - Gerrit A Schubert
- Department of Neurosurgery, Kantonsspital Aarau, Aarau, Switzerland
- Department of Neurosurgery, RWTH Aachen University, Aachen, Germany
| | - Oliver Riesterer
- Radiation Oncology Center Mittelland, Kantonsspital Aarau, Aarau, Switzerland
| |
Collapse
|
4
|
Lecce M, Rasile F, Tanzilli A, Gaviani P, Mariantonia C, Villani V, Pace A, Terrenato I, Casini B, Novello M, Telera S. Second surgery for relapsed glioblastoma: an observational study on criteria for patient selection in real life. Future Oncol 2024; 20:1565-1573. [PMID: 38861296 PMCID: PMC11457679 DOI: 10.1080/14796694.2024.2358743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 05/20/2024] [Indexed: 06/12/2024] Open
Abstract
Aim: There is little consensus on salvage management of glioblastoma after recurrence, for lack of evidence.Materials & methods: A retrospective study of treatments in patients with recurrent glioblastoma.Results: Surgery at recurrence was related to better overall survival (OS) and progression-free survival (PFS). Surgery at recurrence, Karnofsky index, MGMT methylation status, younger age at diagnosis and number of chemotherapy cycles were positive factors for OS and PFS. The benefit of OS was relevant for a second surgery performed at least 9 months after the first one. Systemic treatments after the second surgery were linked to an improved PFS.Conclusion: Younger age, Karnofsky index, MGMT methylation status and a median time between surgeries ≥9 months may be criteria for eligibility for surgery at recurrence.
Collapse
Affiliation(s)
- Mario Lecce
- Neurosurgery Unit, IRCCS Regina Elena National Cancer Institute, via Elio Chianesi 53, 00144, Rome, Italy
| | - Fabrizio Rasile
- Neurosurgery Unit, IRCCS Regina Elena National Cancer Institute, via Elio Chianesi 53, 00144, Rome, Italy
| | - Antonio Tanzilli
- Neuro-Oncology Unit, IRCCS Regina Elena National Cancer Institute, via Elio Chianesi 53, 00144, Rome, Italy
| | - Paola Gaviani
- Neuro Oncology Unit Fondazione IRCSS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Carosi Mariantonia
- Pathology Unit IRCCS Regina Elena National Cancer Institute, via Elio Chianesi 53, 00144, Rome, Italy
| | - Veronica Villani
- Neuro-Oncology Unit, IRCCS Regina Elena National Cancer Institute, via Elio Chianesi 53, 00144, Rome, Italy
| | - Andrea Pace
- Neuro-Oncology Unit, IRCCS Regina Elena National Cancer Institute, via Elio Chianesi 53, 00144, Rome, Italy
| | - Irene Terrenato
- Clinical Trial Center & Biostatistics & Bioinformatics Unit IRCCS Regina Elena National Cancer Institute, via Elio Chianesi 53, 00144, Rome, Italy
| | - Beatrice Casini
- Pathology Unit IRCCS Regina Elena National Cancer Institute, via Elio Chianesi 53, 00144, Rome, Italy
| | - Mariangela Novello
- Pathology Unit IRCCS Regina Elena National Cancer Institute, via Elio Chianesi 53, 00144, Rome, Italy
| | - Stefano Telera
- Neurosurgery Unit, IRCCS Regina Elena National Cancer Institute, via Elio Chianesi 53, 00144, Rome, Italy
| |
Collapse
|
5
|
Reburn C, Gawthorpe G, Perry A, Wood M, Curnow A. Novel Iron-Chelating Prodrug Significantly Enhanced Fluorescence-Mediated Detection of Glioma Cells Experimentally In Vitro. Pharmaceutics 2023; 15:2668. [PMID: 38140009 PMCID: PMC10747273 DOI: 10.3390/pharmaceutics15122668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/10/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
(1) Background: The protoporphyrin IX (PpIX)-mediated fluorescence-guided resection and interoperative photodynamic therapy (PDT) of remaining cells may be effective adjuvants to the resection of glioma. Both processes may be enhanced by increasing intracellular PpIX concentrations, which can be achieved through iron chelation. AP2-18 is a novel combinational drug, which ester-links a PpIX precursor (aminolaevulinic acid; ALA) to an iron-chelating agent (CP94). (2) Methods: Human glioma U-87 MG cells were cultured in 96-well plates for 24 h and incubated for 3 or 6 h with various test compound combinations: ALA (±) CP94, methyl aminolevulinate (MAL) (±) CP94 and AP2-18. PpIX fluorescence was measured at 0, 3 or 6 h with a Bio-tek Synergy HT plate reader, as well as immediately after irradiation with a 635 nm red light (Aktilite CL16 LED array), representing the PDT procedure. Cell viability post-irradiation was assessed using the neutral red assay. (3) Results: AP2-18 significantly increased PpIX fluorescence compared to all other test compounds. All treatment protocols effectively achieved PDT-induced cytotoxicity, with no significant difference between test compound combinations. (4) Conclusions: AP2-18 has potential to improve the efficacy of fluorescence-guided resection either with or without the subsequent intraoperative PDT of glioma. Future work should feature a more complex in vitro model of the glioma microenvironment.
Collapse
Affiliation(s)
| | | | | | | | - Alison Curnow
- Knowledge Spa, Royal Cornwall Hospital, University of Exeter, Truro TR1 3HD, UK; (C.R.); (G.G.); (A.P.); (M.W.)
| |
Collapse
|
6
|
Darcourt J, Chardin D, Bourg V, Gal J, Schiappa R, Blonski M, Koulibaly PM, Almairac F, Mondot L, Le Jeune F, Collombier L, Kas A, Taillandier L, Verger A. Added value of [ 18F]FDOPA PET to the management of high-grade glioma patients after their initial treatment: a prospective multicentre study. Eur J Nucl Med Mol Imaging 2023; 50:2727-2735. [PMID: 37086272 DOI: 10.1007/s00259-023-06225-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/04/2023] [Indexed: 04/23/2023]
Abstract
BACKGROUND Diagnostic value of 3,4-dihydroxy-6-[18F]fluoro-L-phenylalanine ([18F]FDOPA) PET in patients with suspected recurrent gliomas is recognised. We conducted a multicentre prospective study to assess its added value in the practical management of patients suspected of recurrence of high grade gliomas (HGG). METHODS Patients with a proven HGG (WHO grade III and IV) were referred to the multidisciplinary neuro-oncology board (MNOB) during their follow-up after initial standard of care treatment and when MRI findings were not fully conclusive. Each case was discussed in 2 steps. For step 1, a diagnosis and a management proposal were made only based on the clinical and the MRI data. For step 2, the same process was repeated taking the [18F]FDOPA PET results into consideration. A level of confidence for the decisions was assigned to each step. Changes in diagnosis and management induced by [18F]FDOPA PET information were measured. When unchanged, the difference in the confidence of the decisions were assessed. The diagnostic performances of each step were measured. RESULTS 107 patients underwent a total of 138 MNOB assessments. The proposed diagnosis changed between step 1 and step 2 in 37 cases (26.8%) and the proposed management changed in 31 cases (22.5%). When the management did not change, the confidence in the MNOB final decision was increased in 87 cases (81.3%). Step 1 had a sensitivity, specificity and accuracy of 83%, 58% and 66% and step 2, 86%, 64% and 71% respectively. CONCLUSION [18F]FDOPA PET adds significant information for the follow-up of HGG patients in clinical practice. When MRI findings are not straightforward, it can change the management for more than 20% of the patients and increases the confidence level of the multidisciplinary board decisions.
Collapse
Affiliation(s)
- Jacques Darcourt
- Department of Nuclear Medicine, Centre Antoine Lacassagne and UMR 4320 CEA-UCA, Université Côte d'Azur, Nice, France.
| | - David Chardin
- Department of Nuclear Medicine, Centre Antoine Lacassagne and UMR 4320 CEA-UCA, Université Côte d'Azur, Nice, France
| | - Véronique Bourg
- Department of Neurology, CHU, Nice, Université Cote d'Azur, Nice, France
| | - Jocelyn Gal
- Epidemiology and Biostatistics Department, Centre Antoine Lacassagne and Université Côte d'Azur, Nice, France
| | - Renaud Schiappa
- Epidemiology and Biostatistics Department, Centre Antoine Lacassagne and Université Côte d'Azur, Nice, France
| | - Marie Blonski
- Department of Neuro-Oncology, CHU, Nancy and CNRS, UMR 7039, Université de Lorraine, Nancy, France
| | - Pierre-Malick Koulibaly
- Department of Nuclear Medicine, Centre Antoine Lacassagne and UMR 4320 CEA-UCA, Université Côte d'Azur, Nice, France
| | - Fabien Almairac
- Department of Neurosurgery, CHU Nice and UR2CA Team PIN, Université Côte d'Azur, Nice, France
| | - Lydiane Mondot
- Department of Radiology, CHU Nice, Université Côte d'Azur, Nice, France
| | - Florence Le Jeune
- Department of Nuclear Medicine, Centre Eugène Marquis, Rennes and LTSI INSERM 1099, Université de Rennes 1, Rennes, France
| | - Laurent Collombier
- Department of Nuclear Medicine, CHU Nîmes, Université de Montpellier, Nîmes, France
| | - Aurélie Kas
- Department of Nuclear Medicine, AP-HP Hôpitaux Universitaires Pitié-Salpétrière Charles Foix and LIB INSERM U1146, Sorbonne University, Paris, France
| | - Luc Taillandier
- Department of Neuro-Oncology, CHU, Nancy and CNRS, UMR 7039, Université de Lorraine, Nancy, France
| | - Antoine Verger
- Department of Nuclear Medicine & Nancyclotep Imaging Platform, CHU Nancy and IADI INSERM UMR 1254, Université de Lorraine, Nancy, France
| |
Collapse
|
7
|
Ius T, Sabatino G, Panciani PP, Fontanella MM, Rudà R, Castellano A, Barbagallo GMV, Belotti F, Boccaletti R, Catapano G, Costantino G, Della Puppa A, Di Meco F, Gagliardi F, Garbossa D, Germanò AF, Iacoangeli M, Mortini P, Olivi A, Pessina F, Pignotti F, Pinna G, Raco A, Sala F, Signorelli F, Sarubbo S, Skrap M, Spena G, Somma T, Sturiale C, Angileri FF, Esposito V. Surgical management of Glioma Grade 4: technical update from the neuro-oncology section of the Italian Society of Neurosurgery (SINch®): a systematic review. J Neurooncol 2023; 162:267-293. [PMID: 36961622 PMCID: PMC10167129 DOI: 10.1007/s11060-023-04274-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/20/2023] [Indexed: 03/25/2023]
Abstract
PURPOSE The extent of resection (EOR) is an independent prognostic factor for overall survival (OS) in adult patients with Glioma Grade 4 (GG4). The aim of the neuro-oncology section of the Italian Society of Neurosurgery (SINch®) was to provide a general overview of the current trends and technical tools to reach this goal. METHODS A systematic review was performed. The results were divided and ordered, by an expert team of surgeons, to assess the Class of Evidence (CE) and Strength of Recommendation (SR) of perioperative drugs management, imaging, surgery, intraoperative imaging, estimation of EOR, surgery at tumor progression and surgery in elderly patients. RESULTS A total of 352 studies were identified, including 299 retrospective studies and 53 reviews/meta-analysis. The use of Dexamethasone and the avoidance of prophylaxis with anti-seizure medications reached a CE I and SR A. A preoperative imaging standard protocol was defined with CE II and SR B and usefulness of an early postoperative MRI, with CE II and SR B. The EOR was defined the strongest independent risk factor for both OS and tumor recurrence with CE II and SR B. For intraoperative imaging only the use of 5-ALA reached a CE II and SR B. The estimation of EOR was established to be fundamental in planning postoperative adjuvant treatments with CE II and SR B and the stereotactic image-guided brain biopsy to be the procedure of choice when an extensive surgical resection is not feasible (CE II and SR B). CONCLUSIONS A growing number of evidences evidence support the role of maximal safe resection as primary OS predictor in GG4 patients. The ongoing development of intraoperative techniques for a precise real-time identification of peritumoral functional pathways enables surgeons to maximize EOR minimizing the post-operative morbidity.
Collapse
Affiliation(s)
- Tamara Ius
- Division of Neurosurgery, Head-Neck and NeuroScience Department, University Hospital of Udine, Udine, Italy
| | - Giovanni Sabatino
- Institute of Neurosurgery, Fondazione Policlinico Gemelli, Catholic University, Rome, Italy
- Unit of Neurosurgery, Mater Olbia Hospital, Olbia, Italy
| | - Pier Paolo Panciani
- Division of Neurosurgery, Department of Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy.
| | - Marco Maria Fontanella
- Department of Neuro-Oncology, University of Turin and City of Health and Science Hospital, 10094, Torino, Italy
| | - Roberta Rudà
- Department of Neuro-Oncology, University of Turin and City of Health and Science Hospital, 10094, Torino, Italy
- Neurology Unit, Hospital of Castelfranco Veneto, 31033, Castelfranco Veneto, Italy
| | - Antonella Castellano
- Department of Neuroradiology, San Raffaele Scientific Institute, Vita-Salute University, Milan, Italy
| | - Giuseppe Maria Vincenzo Barbagallo
- Department of Medical and Surgical Sciences and Advanced Technologies (G.F. Ingrassia), Neurological Surgery, Policlinico "G. Rodolico - San Marco" University Hospital, University of Catania, Catania, Italy
- Interdisciplinary Research Center On Brain Tumors Diagnosis and Treatment, University of Catania, Catania, Italy
| | - Francesco Belotti
- Division of Neurosurgery, Department of Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | | | - Giuseppe Catapano
- Division of Neurosurgery, Department of Neurological Sciences, Ospedale del Mare, Naples, Italy
| | | | - Alessandro Della Puppa
- Neurosurgical Clinical Department of Neuroscience, Psychology, Pharmacology and Child Health, Careggi Hospital, University of Florence, Florence, Italy
| | - Francesco Di Meco
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Johns Hopkins Medical School, Baltimore, MD, USA
| | - Filippo Gagliardi
- Department of Neurosurgery and Gamma Knife Radiosurgery, San Raffaele Scientific Institute, Vita-Salute University, Milan, Italy
| | - Diego Garbossa
- Department of Neuroscience "Rita Levi Montalcini," Neurosurgery Unit, University of Turin, Torino, Italy
| | | | - Maurizio Iacoangeli
- Department of Neurosurgery, Università Politecnica Delle Marche, Azienda Ospedali Riuniti, Ancona, Italy
| | - Pietro Mortini
- Department of Neurosurgery and Gamma Knife Radiosurgery, San Raffaele Scientific Institute, Vita-Salute University, Milan, Italy
| | | | - Federico Pessina
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090, Milan, Italy
- Neurosurgery Department, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Milan, Italy
| | - Fabrizio Pignotti
- Institute of Neurosurgery, Fondazione Policlinico Gemelli, Catholic University, Rome, Italy
- Unit of Neurosurgery, Mater Olbia Hospital, Olbia, Italy
| | - Giampietro Pinna
- Unit of Neurosurgery, Department of Neurosciences, Hospital Trust of Verona, 37134, Verona, Italy
| | - Antonino Raco
- Division of Neurosurgery, Department of NESMOS, AOU Sant'Andrea, Sapienza University, Rome, Italy
| | - Francesco Sala
- Department of Neurosciences, Biomedicines and Movement Sciences, Institute of Neurosurgery, University of Verona, 37134, Verona, Italy
| | - Francesco Signorelli
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, Neurosurgery Unit, University "Aldo Moro", 70124, Bari, Italy
| | - Silvio Sarubbo
- Department of Neurosurgery, Santa Chiara Hospital, Azienda Provinciale Per I Servizi Sanitari (APSS), Trento, Italy
| | - Miran Skrap
- Division of Neurosurgery, Head-Neck and NeuroScience Department, University Hospital of Udine, Udine, Italy
| | | | - Teresa Somma
- Division of Neurosurgery, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Università Degli Studi Di Napoli Federico II, Naples, Italy
| | | | | | - Vincenzo Esposito
- Department of Neurosurgery "Giampaolo Cantore"-IRCSS Neuromed, Pozzilli, Italy
- Department of Human, Neurosciences-"Sapienza" University of Rome, Rome, Italy
| |
Collapse
|
8
|
Clavreul A, Autier L, Lemée JM, Augereau P, Soulard G, Bauchet L, Figarella-Branger D, Menei P, Network FGB. Management of Recurrent Glioblastomas: What Can We Learn from the French Glioblastoma Biobank? Cancers (Basel) 2022; 14:cancers14225510. [PMID: 36428604 PMCID: PMC9688811 DOI: 10.3390/cancers14225510] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 11/12/2022] Open
Abstract
Safe maximal resection followed by radiotherapy plus concomitant and adjuvant temozolomide (TMZ) is universally accepted as the first-line treatment for glioblastoma (GB), but no standard of care has yet been defined for managing recurrent GB (rGB). We used the French GB biobank (FGB) to evaluate the second-line options currently used, with a view to defining the optimal approach and future directions in GB research. We retrospectively analyzed data for 338 patients with de novo isocitrate dehydrogenase (IDH)-wildtype GB recurring after TMZ chemoradiotherapy. Cox proportional hazards models and Kaplan-Meier analyses were used to investigate survival outcomes. Median overall survival after first surgery (OS1) was 19.8 months (95% CI: 18.5-22.0) and median OS after first progression (OS2) was 9.9 months (95% CI: 8.8-10.8). Two second-line options were noted for rGB patients in the FGB: supportive care and treatments, with systemic treatment being the treatment most frequently used. The supportive care option was independently associated with a shorter OS2 (p < 0.001). None of the systemic treatment regimens was unequivocally better than the others for rGB patients. An analysis of survival outcomes based on time to first recurrence (TFR) after chemoradiotherapy indicated that survival was best for patients with a long TFR (≥18 months; median OS1: 44.3 months (95% CI: 41.7-56.4) and median OS2: 13.0 months (95% CI: 11.2-17.7), but that such patients constituted only a small proportion of the total patient population (13.0%). This better survival appeared to be more strongly associated with response to first-line treatment than with response to second-line treatment, indicating that the recurring tumors were more aggressive and/or resistant than the initial tumors in these patients. In the face of high rates of treatment failure for GB, the establishment of well-designed large cohorts of primary and rGB samples, with the help of biobanks, such as the FGB, taking into account the TFR and survival outcomes of GB patients, is urgently required for solid comparative biological analyses to drive the discovery of novel prognostic and/or therapeutic clinical markers for GB.
Collapse
Affiliation(s)
- Anne Clavreul
- Département de Neurochirurgie, CHU, 49933 Angers, France
- Université d’Angers, Inserm UMR 1307, CNRS UMR 6075, Nantes Université, CRCINA, F-49000 Angers, France
- Correspondence: ; Tel.: +33-241-354822; Fax: +33-241-354508
| | - Lila Autier
- Département de Neurologie, CHU, 49933 Angers, France
- Département d’Oncologie Médicale, Institut de Cancérologie de l’Ouest, Site Paul Papin, 49055 Angers, France
| | - Jean-Michel Lemée
- Département de Neurochirurgie, CHU, 49933 Angers, France
- Université d’Angers, Inserm UMR 1307, CNRS UMR 6075, Nantes Université, CRCINA, F-49000 Angers, France
| | - Paule Augereau
- Département d’Oncologie Médicale, Institut de Cancérologie de l’Ouest, Site Paul Papin, 49055 Angers, France
| | | | - Luc Bauchet
- Département de Neurochirurgie, Hôpital Gui de Chauliac, CHU Montpellier, Université de Montpellier, 34295 Montpellier, France
- Institut de Génomique Fonctionnelle, CNRS, INSERM, 34295 Montpellier, France
| | - Dominique Figarella-Branger
- APHM, CHU Timone, Service d’Anatomie Pathologique et de Neuropathologie, 13385 Marseille, France
- Aix-Marseille University, CNRS, INP, Inst. Neurophysiopathol, 13005 Marseille, France
| | - Philippe Menei
- Département de Neurochirurgie, CHU, 49933 Angers, France
- Université d’Angers, Inserm UMR 1307, CNRS UMR 6075, Nantes Université, CRCINA, F-49000 Angers, France
| | | |
Collapse
|
9
|
Muacevic A, Adler JR. GammaTile: Comprehensive Review of a Novel Radioactive Intraoperative Seed-Loading Device for the Treatment of Brain Tumors. Cureus 2022; 14:e29970. [PMID: 36225241 PMCID: PMC9541893 DOI: 10.7759/cureus.29970] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2022] [Indexed: 11/05/2022] Open
Abstract
GammaTile is a Food and Drug Administration (FDA)-licensed device consisting of four cesium-131 (Cs-131) radiation-emitting seeds in the collagen tile about the postage stamp size. The tiles are utilized to line the brain cavity immediately after tumor resection. GammaTile therapy is a surgically targeted radiation therapy (STaRT) that helps provide instant, dose-intense treatment after the completion of resection. The objective of this study is to explore the safety and efficacy of GammaTile surgically targeted radiation therapy for brain tumors. This study also reviews the differences between GammaTile surgically targeted radiation therapy (STaRT) and other traditional treatment options for brain tumors. The electronic database searches utilized in this study include PubMed, Google Scholar, and ScienceDirect. A total of 4,150 articles were identified based on the search strategy. Out of these articles, 900 articles were retrieved. A total of 650 articles were excluded for various reasons, thus retrieving 250 citations. We applied the exclusion and inclusion criteria to these retrieved articles by screening their full text and excluding 180 articles. Therefore, 70 citations were retrieved and included in this comprehensive literature review, as outlined in the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) diagram. Based on the findings of this study, GammaTile surgically targeted radiation therapy (STaRT) is safe and effective for treating brain tumors. Similarly, the findings have also shown that the efficacy of GammaTile therapy can be enhanced by combining it with other standard-of-care treatment options/external beam radiation therapy (EBRT). Also, the results show that patients diagnosed with recurrent glioblastoma (GBM) exhibit poor median overall survival because of the possibility of the tumor returning. Therefore, combining STaRT with other standard-of-care treatment options/EBRT can improve the patient's overall survival (OS). GammaTile therapy enhances access to care, guarantees 100% compliance, and eliminates patients' need to travel regularly to hospitals for radiation treatments. Its implementation requires collaboration from various specialties, such as radiation oncology, medical physics, and neurosurgery.
Collapse
|
10
|
Botros D, Khalafallah AM, Huq S, Dux H, Oliveira LAP, Pellegrino R, Jackson C, Gallia GL, Bettegowda C, Lim M, Weingart J, Brem H, Mukherjee D. Predictors and Impact of Postoperative 30-Day Readmission in Glioblastoma. Neurosurgery 2022; 91:477-484. [PMID: 35876679 PMCID: PMC10553112 DOI: 10.1227/neu.0000000000002063] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 04/26/2022] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND Postoperative 30-day readmissions have been shown to negatively affect survival and other important outcomes in patients with glioblastoma (GBM). OBJECTIVE To further investigate patient readmission risk factors of primary and recurrent patients with GBM. METHODS The authors retrospectively reviewed records of 418 adult patients undergoing 575 craniotomies for histologically confirmed GBM at an academic medical center. Patient demographics, comorbidities, and clinical characteristics were collected and compared by patient readmission status using chi-square and Mann-Whitney U testing. Multivariable logistic regression was performed to identify risk factors that predicted 30-day readmissions. RESULTS The cohort included 69 (12%) 30-day readmissions after 575 operations. Readmitted patients experienced significantly lower median overall survival (11.3 vs 16.4 months, P = .014), had a lower mean Karnofsky Performance Scale score (66.9 vs 74.2, P = .005), and had a longer initial length of stay (6.1 vs 5.3 days, P = .007) relative to their nonreadmitted counterparts. Readmitted patients experienced more postoperative deep vein thromboses or pulmonary embolisms (12% vs 4%, P = .006), new motor deficits (29% vs 14%, P = .002), and nonhome discharges (39% vs 22%, P = .005) relative to their nonreadmitted counterparts. Multivariable analysis demonstrated increased odds of 30-day readmission with each 10-point decrease in Karnofsky Performance Scale score (odds ratio [OR] 1.32, P = .002), each single-point increase in 5-factor modified frailty index (OR 1.51, P = .016), and initial presentation with cognitive deficits (OR 2.11, P = .013). CONCLUSION Preoperatively available clinical characteristics strongly predicted 30-day readmissions in patients undergoing surgery for GBM. Opportunities may exist to optimize preoperative and postoperative management of at-risk patients with GBM, with downstream improvements in clinical outcomes.
Collapse
Affiliation(s)
- David Botros
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Adham M. Khalafallah
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sakibul Huq
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hayden Dux
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Leonardo A. P. Oliveira
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Richard Pellegrino
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Christopher Jackson
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Gary L. Gallia
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Chetan Bettegowda
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael Lim
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California, USA
| | - Jon Weingart
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Henry Brem
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Debraj Mukherjee
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
11
|
Tirrò E, Massimino M, Broggi G, Romano C, Minasi S, Gianno F, Antonelli M, Motta G, Certo F, Altieri R, Manzella L, Caltabiano R, Barbagallo GMV, Buttarelli FR, Magro G, Giangaspero F, Vigneri P. A Custom DNA-Based NGS Panel for the Molecular Characterization of Patients With Diffuse Gliomas: Diagnostic and Therapeutic Applications. Front Oncol 2022; 12:861078. [PMID: 35372034 PMCID: PMC8969903 DOI: 10.3389/fonc.2022.861078] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/21/2022] [Indexed: 12/12/2022] Open
Abstract
The management of patients with Central Nervous System (CNS) malignancies relies on the appropriate classification of these tumors. Recently, the World Health Organization (WHO) has published new criteria underlining the importance of an accurate molecular characterization of CNS malignancies, in order to integrate the information generated by histology. Next generation sequencing (NGS) allows single step sequencing of multiple genes, generating a comprehensive and specific mutational profile of the tumor tissue. We developed a custom NGS-based multi-gene panel (Glio-DNA panel) for the identification of the correct glioma oncotype and the detection of its essential molecular aberrations. Specifically, the Glio-DNA panel targets specific genetic and chromosomal alterations involving ATRX chromatin remodeler (ATRX), cyclin dependent kinase inhibitor 2A (CDKN2A), isocitrate dehydrogenase (NADP+) 1 (IDH1) and the telomerase reverse transcriptase (TERT) promoter while also recognizing the co-deletion of 1p/19q, loss of chromosome 10 and gain of chromosome 7. Furthermore, the Glio-DNA panel also evaluates the methylation level of the O-6-methylguanine-DNA methyltransferase (MGMT) gene promoter that predicts temozolomide efficacy. As knowledge of the mutational landscape of each glioma is mandatory to define a personalized therapeutic strategy, the Glio-DNA panel also identifies alterations involving "druggable" or "actionable" genes. To test the specificity of our panel, we used two reference mutated DNAs verifying that NGS allele frequency measurement was highly accurate and sensitive. Subsequently, we performed a comparative analysis between conventional techniques - such as immunohistochemistry or fluorescence in situ hybridization - and NGS on 60 diffuse glioma samples that had been previously characterized. The comparison between conventional testing and NGS showed high concordance, suggesting that the Glio-DNA panel may replace multiple time-consuming tests. Finally, the identification of alterations involving different actionable genes matches glioma patients with potential targeted therapies available through clinical trials. In conclusion, our analysis demonstrates NGS efficacy in simultaneously detecting different genetic alterations useful for the diagnosis, prognosis and treatment of adult patients with diffuse glioma.
Collapse
Affiliation(s)
- Elena Tirrò
- Center of Experimental Oncology and Hematology Azienda Ospedaliero Universitaria (AOU) Policlinico “G. Rodolico - San Marco”, Catania, Italy
- Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| | - Michele Massimino
- Center of Experimental Oncology and Hematology Azienda Ospedaliero Universitaria (AOU) Policlinico “G. Rodolico - San Marco”, Catania, Italy
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Giuseppe Broggi
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Anatomic Pathology, University of Catania, Catania, Italy
| | - Chiara Romano
- Center of Experimental Oncology and Hematology Azienda Ospedaliero Universitaria (AOU) Policlinico “G. Rodolico - San Marco”, Catania, Italy
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Simone Minasi
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, La Sapienza University, Rome, Italy
| | - Francesca Gianno
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, La Sapienza University, Rome, Italy
| | - Manila Antonelli
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, La Sapienza University, Rome, Italy
| | - Gianmarco Motta
- Center of Experimental Oncology and Hematology Azienda Ospedaliero Universitaria (AOU) Policlinico “G. Rodolico - San Marco”, Catania, Italy
| | - Francesco Certo
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Neurological Surgery, Policlinico “G. Rodolico - San Marco” University Hospital, University of Catania, Catania, Italy
| | - Roberto Altieri
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Neurological Surgery, Policlinico “G. Rodolico - San Marco” University Hospital, University of Catania, Catania, Italy
| | - Livia Manzella
- Center of Experimental Oncology and Hematology Azienda Ospedaliero Universitaria (AOU) Policlinico “G. Rodolico - San Marco”, Catania, Italy
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Rosario Caltabiano
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Anatomic Pathology, University of Catania, Catania, Italy
| | - Giuseppe Maria Vincenzo Barbagallo
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Neurological Surgery, Policlinico “G. Rodolico - San Marco” University Hospital, University of Catania, Catania, Italy
| | - Francesca Romana Buttarelli
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, La Sapienza University, Rome, Italy
| | - Gaetano Magro
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Anatomic Pathology, University of Catania, Catania, Italy
| | - Felice Giangaspero
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, La Sapienza University, Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Paolo Vigneri
- Center of Experimental Oncology and Hematology Azienda Ospedaliero Universitaria (AOU) Policlinico “G. Rodolico - San Marco”, Catania, Italy
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| |
Collapse
|
12
|
Chen ZP, Lin F, Guo C, Yang Q, Chen Y, Ke C, Sai K, Zhang J, Jiang X, Hu W, Xi S, Zhou J, Li D, Zhou Z, Zhao Q, Cao X. Initial report of a clinical trial evaluating the safety and efficiency of neoadjuvant camrelizumab and apatinib in patients with recurrent high-grade gliomas: A prospective, phase II, single-arm study. GLIOMA 2022. [DOI: 10.4103/glioma.glioma_6_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
13
|
Gessler DJ, Neil EC, Shah R, Levine J, Shanks J, Wilke C, Reynolds M, Zhang S, Özütemiz C, Gencturk M, Folkertsma M, Bell WR, Chen L, Ferreira C, Dusenbery K, Chen CC. GammaTile® brachytherapy in the treatment of recurrent glioblastomas. Neurooncol Adv 2021; 4:vdab185. [PMID: 35088050 PMCID: PMC8788013 DOI: 10.1093/noajnl/vdab185] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Background GammaTile® (GT) is a recent U.S. Food and Drug Administration (FDA) cleared brachytherapy platform. Here, we report clinical outcomes for recurrent glioblastoma patients after GT treatment following maximal safe resection. Methods We prospectively followed twenty-two consecutive Isocitrate Dehydrogenase (IDH) wild-type glioblastoma patients (6 O6-Methylguanine-DNA methyltransferase methylated (MGMTm); sixteen MGMT unmethylated (MGMTu)) who underwent maximal safe resection of recurrent tumor followed by GT placement. Results The cohort consisted of 14 second and eight third recurrences. In terms of procedural safety, there was one 30-day re-admission (4.5%) for an incisional cerebrospinal fluid leak, which resolved with lumbar drainage. No other wound complications were observed. Six patients (27.2%) declined in Karnofsky Performance Score (KPS) after surgery due to worsening existing deficits. One patient suffered a new-onset seizure postsurgery (4.5%). There was one (4.5%) 30-day mortality from intracranial hemorrhage secondary to heparinization for an ischemic limb. The mean follow-up was 733 days (range 279–1775) from the time of initial diagnosis. Six-month local control (LC6) and twelve-month local control (LC12) were 86 and 81%, respectively. Median progression-free survival (PFS) was comparable for MGMTu and MGMTm patients (~8.0 months). Median overall survival (OS) was 20.0 months for the MGMTu patients and 37.4 months for MGMTm patients. These outcomes compared favorably to data in the published literature and an independent glioblastoma cohort of comparable patients without GT treatment. Conclusions This clinical experience supports GT brachytherapy as a treatment option in a multi-modality treatment strategy for recurrent glioblastomas.
Collapse
Affiliation(s)
- Dominic J Gessler
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Elizabeth C Neil
- Department of Neurology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Rena Shah
- Department of Oncology, North Memorial Health, Robbinsdale, Minnesota, USA
| | - Joseph Levine
- Department of Oncology, North Memorial Health, Robbinsdale, Minnesota, USA
| | - James Shanks
- Department of Oncology, Fairview Cancer Care, Minneapolis, Minnesota, USA
| | - Christopher Wilke
- Department of Radiation Oncology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Margaret Reynolds
- Department of Radiation Oncology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Shunqing Zhang
- Department of Radiation Oncology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Can Özütemiz
- Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Mehmet Gencturk
- Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Mark Folkertsma
- Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - W Robert Bell
- Department of Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Liam Chen
- Department of Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Clara Ferreira
- Department of Radiation Oncology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kathryn Dusenbery
- Department of Radiation Oncology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Clark C Chen
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
14
|
Jacobo JA, Buentello M, Del Valle R. C-methionine-PET-guided Gamma Knife radiosurgery boost as adjuvant treatment for newly diagnosed glioblastomas. Surg Neurol Int 2021; 12:247. [PMID: 34221578 PMCID: PMC8247676 DOI: 10.25259/sni_706_2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 03/04/2021] [Indexed: 12/16/2022] Open
Abstract
Background: The most common glial tumor is the glioblastoma, and the prognosis remains dismal despite a multimodal therapeutic approach. The role of radiosurgery for the treatment of glioblastomas has been evaluated in several studies with some benefit at the recurrent stage. We evaluate the results of the protocol administered at the Gamma Knife unit administering radiosurgery as a boost to metabolic active parts of the tumor after the patient had completed traditional external beam radiotherapy (XBRT) as part of the Stupp protocol for high-grade gliomas. Methods: This is a retrospective analysis of seven patients with newly diagnosed glioblastomas who were treated with Gamma Knife radiosurgery as a boost after receiving XBRT as part of the Stupp protocol. The target of radiation was determined according to the findings of the C-methionine PET scan in relation to magnetic resonance images. The primary end point of this study was to determine the progression-free survival (PFS) from the time of diagnosis. Results: The median age of patients was 48.8 years and the mean Karnofsky performance score was 92.8%. The median PFS was 12.4 months. No radiation adverse effects were documented. Conclusion: Stereotactic radiosurgery is safe to use in the upfront treatment for these patients and appears to have a beneficial role in improving the PFS. This beneficial role seems to be conditioned not only by the time the treatment is administered but also where the radiation dose is targeted to.
Collapse
Affiliation(s)
- Javier A Jacobo
- Department of Surgical Neuro-Oncology, National Institute of Neurology and Neurosurgery, Mexico City, Mexico
| | - Masao Buentello
- Gamma Knife Unit, Medica Sur Foundation, Mexico City, Mexico
| | | |
Collapse
|
15
|
Maragkos GA, Schüpper AJ, Lakomkin N, Sideras P, Price G, Baron R, Hamilton T, Haider S, Lee IY, Hadjipanayis CG, Robin AM. Fluorescence-Guided High-Grade Glioma Surgery More Than Four Hours After 5-Aminolevulinic Acid Administration. Front Neurol 2021; 12:644804. [PMID: 33767664 PMCID: PMC7985355 DOI: 10.3389/fneur.2021.644804] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/08/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Fluorescence-guided surgery (FGS) using 5-aminolevulic acid (5-ALA) is a widely used strategy for delineating tumor tissue from surrounding brain intraoperatively during high-grade glioma (HGG) resection. 5-ALA reaches peak plasma levels ~4 h after oral administration and is currently approved by the FDA for use 2–4 h prior to induction to anesthesia. Objective: To demonstrate that there is adequate intraoperative fluorescence in cases undergoing surgery more than 4 h after 5-ALA administration and compare survival and radiological recurrence to previous data. Methods: Retrospective analysis of HGG patients undergoing FGS more than 4 h after 5-ALA administration was performed at two institutions. Clinical, operative, and radiographic pre- and post-operative characteristics are presented. Results: Sixteen patients were identified, 6 of them female (37.5%), with mean (SD) age of 59.3 ± 11.5 years. Preoperative mean modified Rankin score (mRS) was 2 ± 1. All patients were dosed with 20 mg/kg 5-ALA the morning of surgery. Mean time to anesthesia induction was 425 ± 334 min. All cases had adequate intraoperative fluorescence. Eloquent cortex was involved in 12 cases (75%), and 13 cases (81.3%) had residual contrast enhancement on postoperative MRI. Mean progression-free survival was 5 ± 3 months. In the study period, 6 patients died (37.5%), mean mRS was 2.3 ± 1.3, Karnofsky score 71.9 ± 22.1, and NIHSS 3.9 ± 2.4. Conclusion: Here we demonstrate that 5-ALA-guided HGG resection can be performed safely more than 4 h after administration, with clinical results largely similar to previous reports. Relaxation of timing restrictions could improve procedure workflow in busy neurosurgical centers, without additional risk to patients.
Collapse
Affiliation(s)
- Georgios A Maragkos
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, Mount Sinai Health System, New York, NY, United States
| | - Alexander J Schüpper
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, Mount Sinai Health System, New York, NY, United States
| | - Nikita Lakomkin
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, Mount Sinai Health System, New York, NY, United States
| | - Panagiotis Sideras
- Department of Radiology, Icahn School of Medicine at Mount Sinai, Mount Sinai Health System, New York, NY, United States
| | - Gabrielle Price
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, Mount Sinai Health System, New York, NY, United States
| | - Rebecca Baron
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, Mount Sinai Health System, New York, NY, United States
| | - Travis Hamilton
- Department of Neurosurgery, Henry Ford Health System, Detroit, MI, United States
| | - Sameah Haider
- Department of Neurosurgery, Henry Ford Health System, Detroit, MI, United States
| | - Ian Y Lee
- Department of Neurosurgery, Henry Ford Health System, Detroit, MI, United States
| | - Constantinos G Hadjipanayis
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, Mount Sinai Health System, New York, NY, United States.,Department of Neurosurgery, Icahn School of Medicine, Mount Sinai Beth Israel, Mount Sinai Health System, New York, NY, United States
| | - Adam M Robin
- Department of Neurosurgery, Henry Ford Health System, Detroit, MI, United States
| |
Collapse
|
16
|
Minniti G, Niyazi M, Alongi F, Navarria P, Belka C. Current status and recent advances in reirradiation of glioblastoma. Radiat Oncol 2021; 16:36. [PMID: 33602305 PMCID: PMC7890828 DOI: 10.1186/s13014-021-01767-9] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/11/2021] [Indexed: 12/12/2022] Open
Abstract
Despite aggressive management consisting of maximal safe surgical resection followed by external beam radiation therapy (60 Gy/30 fractions) with concomitant and adjuvant temozolomide, approximately 90% of WHO grade IV gliomas (glioblastomas, GBM) will recur locally within 2 years. For patients with recurrent GBM, no standard of care exists. Thanks to the continuous improvement in radiation science and technology, reirradiation has emerged as feasible approach for patients with brain tumors. Using stereotactic radiosurgery (SRS) or stereotactic radiotherapy (SRT), either hypofractionated or conventionally fractionated schedules, several studies have suggested survival benefits following reirradiation of patients with recurrent GBM; however, there are still questions to be answered about the efficacy and toxicity associated with a second course of radiation. We provide a clinical overview on current status and recent advances in reirradiation of GBM, addressing relevant clinical questions such as the appropriate patient selection and radiation technique, optimal dose fractionation, reirradiation tolerance of the brain and the risk of radiation necrosis.
Collapse
Affiliation(s)
- Giuseppe Minniti
- Department of Medicine, Surgery and Neurosciences, University of Siena, Policlinico le Scotte, 53100, Siena, Italy. .,IRCCS Neuromed, Pozzilli, IS, Italy.
| | - Maximilian Niyazi
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Filippo Alongi
- Advanced Radiation Oncology Department, Cancer Care Center, IRCCS Sacro Cuore Don Calabria Hospital, Negrar, VR, Italy
| | - Piera Navarria
- Radiotherapy and Radiosurgery Department, Humanitas Clinical and Research Hospital-IRCCS, Rozzano, MI, Italy
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
17
|
FAM225B Is a Prognostic lncRNA for Patients with Recurrent Glioblastoma. DISEASE MARKERS 2020; 2020:8888085. [PMID: 33299501 PMCID: PMC7704151 DOI: 10.1155/2020/8888085] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/22/2020] [Accepted: 10/29/2020] [Indexed: 12/22/2022]
Abstract
Objective The overall survival of patients with recurrent glioblastoma (rGBM) is quite different, so clinical outcome prediction is necessary to guide personalized clinical treatment for patients with rGBM. The expression level of lncRNA FAM225B was analyzed to determine its prognostic value in rGBMs. Methods We collected 109 samples of Chinese Glioma Genome Atlas (CGGA) RNA sequencing dataset and divided into training set and validation set. Then, we analyzed the expression of FAM225B, clinical characteristics, and overall survival (OS) information. Kaplan-Meier survival analysis was used to estimate the OS distributions. The prognostic value of FAM225B in rGBMs was tested by univariate and multivariate Cox regression analyses. Moreover, we analyzed the biological processes and signaling pathways of FAM225B. Results We found that FAM225B was upregulated in rGBMs (P = 0.0009). The expression of FAM225B increased with the grades of gliomas (P < 0.0001). The OS of rGBMs in the low-expression group was significantly longer than that in the high-expression group (P = 0.0041). Similar result was found in the training set (P = 0.0340) and verified in the validation set (P = 0.0292). In multivariate Cox regression analysis, FAM225B was identified to be an independent prognostic factor for rGBMs (P = 0.003). Biological process and KEGG pathway analyses implied FAM225B mainly played a functional role on transcription, regulation of transcription, cell migration, focal adhesion, etc. Conclusions FAM225B is expected to be as a new prognostic biomarker for the identification of rGBM patients with poor outcome. And our study provided a potential therapeutic target for rGBMs.
Collapse
|