1
|
Ruella ME, Caffaratti G, Villamil F, Crivelli L, Cervio A. Insular Gliomas. Experience in a Latin American Center and Assessment of Variables Related to Surgical Management and Prognosis. World Neurosurg 2024:S1878-8750(24)01567-5. [PMID: 39265939 DOI: 10.1016/j.wneu.2024.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 09/03/2024] [Indexed: 09/14/2024]
Abstract
OBJECTIVE To describe our experience in the resection of gliomas involving the insula and analyze the variables implicated in the management and prognosis of these tumors. METHODS This retrospective, single-center, analytic study included a cohort of 83 patients who underwent surgery for insular gliomas by the same surgeon in a third-level Argentine center, in the period between 2010 and 2023. We analyzed the population's demographic, clinical, and radiologic features and surgical variables associated with postoperative results and prognosis using multivariate regression analysis. RESULTS A total of 53 patients (54% men) were included, with a mean follow-up of 40.7 months. The mean age at surgery was 41 years (range, 21-73) and 66.1% corresponded to low-grade gliomas (LGGs). Seizures were the initial symptom in most cases. There was evidence of tumor extension over the insula to the temporal or/and frontal lobe in 64.2% of patients. An extent of resection >90% was achieved in 62.3% of cases (27% of gross total resection), with an average resected volume of 89.4%. Awake craniotomy was indicated in 47% of patients and intraoperative magnetic resonance imaging was performed in 24%. Recurrence was observed in 44% of patients, with a mean progression-free survival of 31 months (42 months in LGG and 10 months in high-grade glioma [HGG]). Nine patients underwent reoperation. By the time of 2 years, survival was 100% for LGG and 46% for HGG, whereas 4-year overall survival was 92% for patients with LGG and 15.4% for those with HGG. CONCLUSIONS Surgery for insular gliomas is a complex task that needs to be managed with adequate preoperative and intraoperative assessment to achieve maximum safe resection with low morbidity for better functional and oncologic outcomes. Adequate anatomic understanding, radiologic analysis, awake craniotomy, and cortical and subcortical mapping are paramount to pursue this aim.
Collapse
Affiliation(s)
| | | | | | - Lucia Crivelli
- Department of Cognitive Neurology, Neuropsychology, Fleni, Buenos Aires, Argentina
| | - Andrés Cervio
- Department of Neurosurgery, Fleni, Buenos Aires, Argentina
| |
Collapse
|
2
|
Altunyuva O, Kasab R, Fedakar R, Yilmazlar S. Intradural anatomy and mobilization techniques of oculomotor, trochlear and abducens nerve after microsurgical dissection: a cadaveric study. NEUROCIRUGIA (ENGLISH EDITION) 2024; 35:253-262. [PMID: 38906416 DOI: 10.1016/j.neucie.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/08/2024] [Accepted: 05/30/2024] [Indexed: 06/23/2024]
Abstract
BACKGROUND This study investigates the mobilization of cranial nerves in the upper clival region to improve surgical approaches. Cadaveric specimens (n = 20) were dissected to examine the oculomotor, trochlear, and abducens nerves. Dissection techniques focused on the nerves' intradural course and their relationship to surrounding structures. METHODS Pre-dissection revealed the nerves' entry points into the clival dura and their proximity to each other. Measurements were taken to quantify these distances. Following intradural dissection, measurements were again obtained to assess the degree of nerve mobilization. RESULTS Dissection showed that the abducens nerve takes three folds during its course: at the dural foramen, towards the posterior cavernous sinus, and lastly within the cavernous sinus. The trochlear nerve enters the dura and makes two bends before entering the cavernous sinus. The oculomotor nerve enters the cavernous sinus directly and runs parallel to the trochlear nerve. Importantly, intradural dissection increased the space between the abducens nerves (by 4.21 mm) and between the oculomotor and trochlear nerves (by 3.09 mm on average). This indicates that nerve mobilization can create wider surgical corridors for approaching lesions in the upper clivus region. CONCLUSIONS This study provides a detailed anatomical analysis of the oculomotor, trochlear, and abducens nerves in the upper clivus. The cadaveric dissections and measurements demonstrate the feasibility of mobilizing these nerves to achieve wider surgical corridors. This information can be valuable for surgeons planning endoscopic or microscopic approaches to lesions in the upper clivus region.
Collapse
Affiliation(s)
- Oguz Altunyuva
- Bursa Uludag University, Faculty of Medicine, Department of Neurosurgery, Bursa, Türkiye
| | - Reyhan Kasab
- Bursa Uludag University, Faculty of Medicine, Department of Neurosurgery, Bursa, Türkiye
| | - Recep Fedakar
- Bursa Uludag University, Faculty of Medicine, Department of Forensic Medicine, Bursa, Türkiye
| | - Selcuk Yilmazlar
- Bursa Uludag University, Faculty of Medicine, Department of Neurosurgery, Bursa, Türkiye.
| |
Collapse
|
3
|
Sasagawa Y, Tanaka S, Kinoshita M, Nakada M. Endoscopic and exoscopic surgery for brain tumors. Int J Clin Oncol 2024:10.1007/s10147-024-02529-9. [PMID: 38976183 DOI: 10.1007/s10147-024-02529-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/04/2024] [Indexed: 07/09/2024]
Abstract
Nerves and blood vessels must be protected during brain tumor surgery, which has traditionally relied on microscopes. In the 2000s, endoscopes and related equipment were developed for neurosurgery. In this review, we aim to outline the role of endoscopes in brain tumor surgery and discuss the emerging use of exoscopes. The primary use of endoscopes in brain tumor surgery is in endoscopic endonasal surgery for pituitary tumors. By using the space within the sphenoid sinus, surgeons can insert an endoscope and instruments such as forceps or scissors through the nose to access and remove the tumor. Compared to microscopes, endoscopes can get closer to tumors, nerves, and blood vessels. They enable wide-angle observation of the skull base, making them valuable for skull base tumors as well as pituitary tumors. Endoscopes are also used in cases where a brain tumor is associated with hydrocephalus, allowing surgeons to correct obstructive hydrocephalus and perform tumor biopsies simultaneously. Exoscopy, a newer technique introduced in recent years, involves surgeons wearing special glasses and removing the tumor while viewing a three-dimensional monitor. This approach reduces surgeon fatigue and allows for more natural positioning during lengthy brain tumor surgeries. Future brain tumor surgeries will likely involve robotic surgery, which is already used for other organs. This is expected to make brain tumor removal safer and more accurate.
Collapse
Affiliation(s)
- Yasuo Sasagawa
- Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-Machi, Kanazawa, Ishikawa, 920-8641, Japan.
| | - Shingo Tanaka
- Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-Machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Masashi Kinoshita
- Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-Machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Mitsutoshi Nakada
- Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-Machi, Kanazawa, Ishikawa, 920-8641, Japan
| |
Collapse
|
4
|
Ali TE, Rodoshi ZN, Salcedo YE, Patel VK, Khan I. Optimizing Glioma Resection Outcomes: A Systematic Review of Intraoperative Magnetic Resonance Imaging Guidance in Neurosurgery. Cureus 2024; 16:e64697. [PMID: 39156414 PMCID: PMC11327550 DOI: 10.7759/cureus.64697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2024] [Indexed: 08/20/2024] Open
Abstract
This systematic review evaluates the efficacy of intraoperative magnetic resonance imaging (iMRI) in enhancing glioma resection outcomes within neurosurgical procedures. Given the complexity and variability of gliomas, achieving precise and safe resections is challenging, necessitating the use of advanced imaging techniques like iMRI. This technology provides real-time, high-resolution insights during surgery, allowing for adaptations based on surgical dynamics and brain shifts. Our comprehensive search across multiple databases selected five significant studies that collectively demonstrate the beneficial impact of iMRI. These studies highlight its role in significantly improving the extent of tumor resection and suggest potential enhancements in both immediate and long-term patient outcomes. The findings indicate that iMRI facilitates more aggressive yet safe resections, particularly in high-risk glioma cases. However, the implementation of iMRI in clinical practice requires careful consideration of training, resource allocation, and the potential variability in outcomes due to study design heterogeneity. Future research should focus on randomized controlled trials to better understand the cost-effectiveness and long-term benefits of iMRI, promoting its wider adoption in neurosurgical settings.
Collapse
Affiliation(s)
- Thowaiba E Ali
- Medicine and Surgery, University of Khartoum, Khartoum, SDN
- Healthcare Administration, University of Tennessee at Chattanooga, Chattanooga, USA
| | | | | | | | - Ismail Khan
- Internal Medicine, Nishtar Medical University, Multan, PAK
| |
Collapse
|
5
|
Ruella ME, Caffaratti G, Chaves H, Yañez P, Cervio A. Transoperative Magnetic Resonance Imaging in Awake Glioma Surgery: Experience in a Latin American Tertiary-Level Center. World Neurosurg 2024; 186:e65-e74. [PMID: 38417621 DOI: 10.1016/j.wneu.2024.02.104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/19/2024] [Indexed: 03/01/2024]
Abstract
OBJECTIVE Analyze the usefulness, efficacy, and safety of transoperative magnetic resonance imaging (tMRI) in glioma surgery in awake patients. METHODS Retrospective, single-center, analytical study of a cohort of patients who underwent awake surgery for gliomas by the same surgeon in a third-level Argentine center, in the period between 2012 and 2022. Only patients with pathology-confirmed gliomas, with 6-month follow-up, who had preoperative and postoperative volumetric magnetic resonance imaging, were included in this sample. Subsequently, we analyzed which patients received surgery with the tMRI protocol and the results using multivariate regression analysis. RESULTS A total of 71 patients were included. A tMRI study was performed on 22 (31%) of these patients. The use of tMRI increased the percentage of resection by 20% (P = 0.03), thereby increasing the possibility of gross total resection. However, using tMRI significantly extended surgical time by 84 minutes (P < 0.001). In 55% of the patients in whom tMRI was performed, the resection was continued after it. The use of tMRI did not increase the rate of infections or the development of surgically associated neurological deficits in the long term, despite the fact that 47% of the patients showed the development of a new deficit or worsening of a previous one during the intraoperative period. CONCLUSIONS The use of tMRI in awake glioma surgery proved to be a safe tool that contributes to increasing the degree of tumor resection, compared to the use of neurophysiological mapping and neuronavigation, at the expense of increased surgical times and costs. We consider tMRI in awake glioma surgery should be used in properly selected cases.
Collapse
Affiliation(s)
- Mauro E Ruella
- Department of Neurosurgery, Fleni, Buenos Aires, Argentina.
| | | | - Hernan Chaves
- Department of Neuro-Radiology, Fleni, Buenos Aires, Argentina
| | - Paulina Yañez
- Department of Neuro-Radiology, Fleni, Buenos Aires, Argentina
| | - Andrés Cervio
- Department of Neurosurgery, Fleni, Buenos Aires, Argentina
| |
Collapse
|
6
|
Tang L, Tan TK. Anaesthetic considerations and challenges during awake craniotomy. Singapore Med J 2024:00077293-990000000-00087. [PMID: 38305272 DOI: 10.4103/singaporemedj.smj-2022-053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/10/2023] [Indexed: 02/03/2024]
Abstract
ABSTRACT This article summarises the key anaesthetic considerations and challenges surrounding the perioperative management of a patient undergoing awake craniotomy. The main goals include patient comfort, facilitation of patient cooperation during the critical awake phase and maintenance of optimal operating conditions. These are achieved through appropriate patient selection and preparation, familiarity with the complexity of each surgical phase and potential complications that may arise, as well as maintenance of close communication among all team members. Challenges such as loss of patient cooperation, loss of airway, intraoperative nausea and vomiting, seizures, cerebral oedema, hypertension, blood loss and use of intraoperative magnetic resonance imaging are discussed. The importance of teamwork, competence, vigilance and clear management strategies for potential complications to maximise patient outcomes is also highlighted.
Collapse
Affiliation(s)
- Leonard Tang
- Department of Anaesthesia, Singapore General Hospital, Singapore
| | | |
Collapse
|
7
|
Liaropoulos I, Liaropoulos A, Liaropoulos K. Critical Assessment of Cancer Characterization and Margin Evaluation Techniques in Brain Malignancies: From Fast Biopsy to Intraoperative Flow Cytometry. Cancers (Basel) 2023; 15:4843. [PMID: 37835537 PMCID: PMC10571534 DOI: 10.3390/cancers15194843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/29/2023] [Accepted: 10/01/2023] [Indexed: 10/15/2023] Open
Abstract
Brain malignancies, given their intricate nature and location, present significant challenges in both diagnosis and treatment. This review critically assesses a range of diagnostic and surgical techniques that have emerged as transformative tools in brain malignancy management. Fast biopsy techniques, prioritizing rapid and minimally invasive tissue sampling, have revolutionized initial diagnostic stages. Intraoperative flow cytometry (iFC) offers real-time cellular analysis during surgeries, ensuring optimal tumor resection. The advent of intraoperative MRI (iMRI) has seamlessly integrated imaging into surgical procedures, providing dynamic feedback and preserving critical brain structures. Additionally, 5-aminolevulinic acid (5-ALA) has enhanced surgical precision by inducing fluorescence in tumor cells, aiding in their complete resection. Several other techniques have been developed in recent years, including intraoperative mass spectrometry methodologies. While each technique boasts unique strengths, they also present potential limitations. As technology and research continue to evolve, these methods are set to undergo further refinement. Collaborative global efforts will be pivotal in driving these advancements, promising a future of improved patient outcomes in brain malignancy management.
Collapse
|
8
|
Tuleasca C, Leroy HA, Strachowski O, Derre B, Maurage CA, Peciu-Florianu I, Reyns N. Combined use of intraoperative MRI and awake tailored microsurgical resection to respect functional neural networks: preliminary experience. Swiss Med Wkly 2023; 153:40072. [PMID: 37192405 DOI: 10.57187/smw.2023.40072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023] Open
Abstract
INTRODUCTION The combined use of intraoperative MRI and awake surgery is a tailored microsurgical resection to respect functional neural networks (mainly the language and motor ones). Intraoperative MRI has been classically considered to increase the extent of resection for gliomas, thereby reducing neurological deficits. Herein, we evaluated the combined technique of awake microsurgical resection and intraoperative MRI for primary brain tumours (gliomas, metastasis) and epilepsy (cortical dysplasia, non-lesional, cavernomas). PATIENTS AND METHODS Eighteen patients were treated with the commonly used "asleep awake asleep" (AAA) approach at Lille University Hospital, France, from November 2016 until May 2020. The exact anatomical location was insular with various extensions, frontal, temporal or fronto-temporal in 8 (44.4%), parietal in 3 (16.7%), fronto-opercular in 4 (22.2%), Rolandic in two (11.1%), and the supplementary motor area (SMA) in one (5.6%). RESULTS The patients had a mean age of 38.4 years (median 37.1, range 20.8-66.9). The mean surgical duration was 4.1 hours (median 4.2, range 2.6-6.4) with a mean duration of intraoperative MRI of 28.8 minutes (median 25, range 13-55). Overall, 61% (11/18) of patients underwent further resection, while 39% had no additional resection after intraoperative MRI. The mean preoperative and postoperative tumour volumes of the primary brain tumours were 34.7 cc (median 10.7, range 0.534-130.25) and 3.5 cc (median 0.5, range 0-17.4), respectively. Moreover, the proportion of the initially resected tumour volume at the time of intraoperative MRI (expressed as 100% from preoperative volume) and the final resected tumour volume were statistically significant (p= 0.01, Mann-Whitney test). The tumour remnants were commonly found posterior (5/9) or anterior (2/9) insular and in proximity with the motor strip (1/9) or language areas (e.g. Broca, 1/9). Further resection was not required in seven patients because there were no remnants (3/7), cortical stimulation approaching eloquent areas (3/7) and non-lesional epilepsy (1/7). The mean overall follow-up period was 15.8 months (median 12, range 3-36). CONCLUSION The intraoperative MRI and awake microsurgical resection approach is feasible with extensive planning and multidisciplinary collaboration, as these methods are complementary and synergic rather than competitive to improve patient oncological outcomes and quality of life.
Collapse
Affiliation(s)
- Constantin Tuleasca
- Centre Hospitalier Regional Universitaire de Lille, Roger Salengro Hospital, Neurosurgery and Neurooncology Service, Lille, France
- Department of Clinical Neurosciences, Neurosurgery Service and Gamma Knife Center, Lausanne University Hospital (CHUV), Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- Signal Processing Laboratory (LTS 5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Henri-Arthur Leroy
- Centre Hospitalier Regional Universitaire de Lille, Roger Salengro Hospital, Neurosurgery and Neurooncology Service, Lille, France
| | - Ondine Strachowski
- Centre Hospitalier Regional Universitaire de Lille, Roger Salengro Hospital, Neurosurgery and Neurooncology Service, Lille, France
| | - Benoit Derre
- Centre Hospitalier Regional Universitaire de Lille, Roger Salengro Hospital, Neurosurgery and Neurooncology Service, Lille, France
| | - Claude-Alain Maurage
- Centre Hospitalier Regional Universitaire de Lille, Roger Salengro Hospital, Neurosurgery and Neurooncology Service, Lille, France
| | - Iulia Peciu-Florianu
- Centre Hospitalier Regional Universitaire de Lille, Roger Salengro Hospital, Neurosurgery and Neurooncology Service, Lille, France
| | - Nicolas Reyns
- Centre Hospitalier Regional Universitaire de Lille, Roger Salengro Hospital, Neurosurgery and Neurooncology Service, Lille, France
| |
Collapse
|
9
|
Tuleasca C, Peciu-Florianu I, Strachowski O, Derre B, Vannod-Michel Q, Reyns N. How to combine the use of intraoperative magnetic resonance imaging (MRI) and awake craniotomy for microsurgical resection of hemorrhagic cavernous malformation in eloquent area: a case report. J Med Case Rep 2023; 17:160. [PMID: 37041613 PMCID: PMC10091828 DOI: 10.1186/s13256-023-03816-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/08/2023] [Indexed: 04/13/2023] Open
Abstract
BACKGROUND Cavernous malformations are clusters of abnormal and hyalinized capillaries without interfering brain tissue. Here, we present a cavernous malformation operated under awake conditions, due to location, in an eloquent area and using intraoperative magnetic resonance imaging due to patient's movement upon the awake phase. CASE PRESENTATION We present the pre-, per-, and postoperative course of an inferior parietal cavernous malformation, located in eloquent area, in a 27-year-old right-handed Caucasian male, presenting with intralesional hemorrhage and epilepsy. Preoperative diffusion tensor imaging has shown the cavernous malformation at the interface between the arcuate fasciculus and the inferior fronto-occipital fasciculus. We describe the microsurgical approach, combining preoperative diffusion tensor imaging, neuronavigation, awake microsurgical resection, and intraoperative magnetic resonance imaging. CONCLUSION Complete microsurgical en bloc resection has been performed and is feasible even in eloquent locations. Intraoperative magnetic resonance imaging was considered an important adjunct, particularly used in this case as the patient moved during the "awake" phase of the surgery and thus neuronavigation was not accurate anymore. Postoperative course was marked by a unique, generalized seizure without any adverse event. Immediate and 3 months postoperative magnetic resonance imaging confirmed the absence of any residue. Pre- and postoperative neuropsychological exams were unremarkable.
Collapse
Affiliation(s)
- Constantin Tuleasca
- Neurosurgery and Neurooncology Service Lille, Centre Hospitalier Regional Universitaire de Lille, Roger Salengro Hospital, Lille, France.
- Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), Lausanne, Switzerland.
- Department of Clinical Neurosciences, Neurosurgery Service and Gamma Knife Center, Lausanne University Hospital (CHUV), Lausanne, Switzerland.
- Signal Processing Laboratory (LTS 5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | - Iulia Peciu-Florianu
- Neurosurgery and Neurooncology Service Lille, Centre Hospitalier Regional Universitaire de Lille, Roger Salengro Hospital, Lille, France
| | - Ondine Strachowski
- Neurosurgery and Neurooncology Service Lille, Centre Hospitalier Regional Universitaire de Lille, Roger Salengro Hospital, Lille, France
| | - Benoit Derre
- Neurosurgery and Neurooncology Service Lille, Centre Hospitalier Regional Universitaire de Lille, Roger Salengro Hospital, Lille, France
| | - Quentin Vannod-Michel
- Neuroradiology Service, Centre Hospitalier Regional Universitaire de Lille, Roger Salengro Hospital, Lille, France
| | - Nicolas Reyns
- Neurosurgery and Neurooncology Service Lille, Centre Hospitalier Regional Universitaire de Lille, Roger Salengro Hospital, Lille, France
| |
Collapse
|
10
|
Frosina G. Recapitulating the Key Advances in the Diagnosis and Prognosis of High-Grade Gliomas: Second Half of 2021 Update. Int J Mol Sci 2023; 24:ijms24076375. [PMID: 37047356 PMCID: PMC10094646 DOI: 10.3390/ijms24076375] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/02/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023] Open
Abstract
High-grade gliomas (World Health Organization grades III and IV) are the most frequent and fatal brain tumors, with median overall survivals of 24–72 and 14–16 months, respectively. We reviewed the progress in the diagnosis and prognosis of high-grade gliomas published in the second half of 2021. A literature search was performed in PubMed using the general terms “radio* and gliom*” and a time limit from 1 July 2021 to 31 December 2021. Important advances were provided in both imaging and non-imaging diagnoses of these hard-to-treat cancers. Our prognostic capacity also increased during the second half of 2021. This review article demonstrates slow, but steady improvements, both scientifically and technically, which express an increased chance that patients with high-grade gliomas may be correctly diagnosed without invasive procedures. The prognosis of those patients strictly depends on the final results of that complex diagnostic process, with widely varying survival rates.
Collapse
|
11
|
Monitored anesthesia care and asleep-awake-asleep techniques combined with multiple monitoring for resection of gliomas in eloquent brain areas: a retrospective analysis of 225 patients. Chin Neurosurg J 2022; 8:45. [PMID: 36582003 PMCID: PMC9801549 DOI: 10.1186/s41016-022-00311-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 11/22/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Awake craniotomy (AC) has become gold standard in surgical resection of gliomas located in eloquent areas. The conscious sedation techniques in AC include both monitored anesthesia care (MAC) and asleep-awake-asleep (AAA). The choice of optimal anesthetic method depends on the preferences of the surgical team (mainly anesthesiologist and neurosurgeon). The aim of this study was to compare the difference in physiological and blood gas data, dosage of different drugs, the probability of switching to endotracheal intubation, and extent of tumor resection and dysfunction after operation between AAA and MAC anesthetic management for resection of gliomas in eloquent brain areas. METHODS Two-hundred and twenty-five patients with super-tentorial tumor located in eloquent areas underwent AC from 2009 to 2021 in Xijing Hospital. Forty-one patients underwent AAA technique, and the rest one-hundred eighty-four patients underwent MAC technique. Anesthetic management, dosage of different drugs, intraoperative complications, postoperative outcomes, adverse events, extent of resection and motor, and sensory and language dysfunction after operation were compared between MAC and AAA. RESULT There was no significant difference in gender, KPS score, MMSE score, glioma grade, type, and growth site between the patients in the two groups, except the older age of patients in MAC group than that in AAA group. During the whole process of operation, there were greater pulse pressure difference (P = 0.046), shorter operation time (P = 0.039), less dosage of remifentanil (P = 0.000), more dosage of dexmedetomidine (P = 0.013), more use of antiemetics (81%, P = 0.0067), lower use of vasoactive agent (45.1%, P = 0.010), and lower probability of conversion to general anesthesia (GA, P = 0.027) in MAC group than that in AAA group. Blood gas analysis showed that PetCO2 (P = 0.000), Glu concentration (P = 0.000), and PaCO2 (P = 0.000) were higher, but SPO2 (P = 0.002) and PaO2 (P = 0.000) were lower in MAC group than that in AAA group. In the postoperative recovery stage, compared with that of AAA group, the probability of dysfunction in MAC group at 1, 3, 5, and 7 days after operation was lower, which were 27.8% vs 53.6% (P = 0.003), 31% vs 68.3% (P = 0.000), 28.8% vs 63.4% (P = 0.000), and 25.6% vs 58.5% (P = 0.000), respectively. CONCLUSION Compared with AAA, it seems that MAC has more advantages in the management for resection of gliomas in eloquent brain areas, and MAC combined with multiple monitoring such as cerebral cortical mapping, neuronavigation, and ultrasonic detection is worthy of popularization for the resection of gliomas in eloquent brain areas.
Collapse
|
12
|
Hou Y, Li Y, Li Q, Yu Y, Tang J. Full-course resection control strategy in glioma surgery using both intraoperative ultrasound and intraoperative MRI. Front Oncol 2022; 12:955807. [PMID: 36091111 PMCID: PMC9453394 DOI: 10.3389/fonc.2022.955807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundIntraoperative ultrasound(iUS) and intraoperative MRI (iMRI) are effective ways to perform resection control during glioma surgery. However, most published studies employed only one modality. Few studies have used both during surgery. How to combine these two techniques reasonably, and what advantages they could have for glioma surgery are still open questions.MethodsWe retrospectively reviewed a series of consecutive patients who underwent initial surgical treatment of supratentorial gliomas in our center. We utilized a full-course resection control strategy to combine iUS and iMRI: IUS for pre-resection assessment and intermediate resection control; iMRI for final resection control. The basic patient characteristics, surgical results, iMRI/iUS findings, and their impacts on surgical procedures were evaluated and reported.ResultsA total of 40 patients were included. The extent of resection was 95.43 ± 10.37%, and the gross total resection rate was 72.5%. The median residual tumor size was 6.39 cm3 (range 1.06–16.23 cm3). 5% (2/40) of patients had permanent neurological deficits after surgery. 17.5% (7/40) of patients received further resection after the first iMRI scan, resulting in four (10%) more patients achieving gross total resection. The number of iMRI scans per patient was 1.18 ± 0.38. The surgical time was 4.5 ± 3.6 hours. The pre-resection iUS scan revealed that an average of 3.8 borders of the tumor were beside sulci in 75% (30/40) patients. Intermediate resection control was utilized in 67.5% (27/40) of patients. In 37.5% (15/40) of patients, the surgical procedures were changed intraoperatively based on the iUS findings. Compared with iMRI, the sensitivity and specificity of iUS for residual tumors were 46% and 96%, respectively.ConclusionThe full-course resection control strategy by combining iUS and iMRI could be successfully implemented with good surgical results in initial glioma surgeries. This strategy might stabilize resection control quality and provide the surgeon with more intraoperative information to tailor the surgical strategy. Compared with iMRI-assisted glioma surgery, this strategy might improve efficiency by reducing the number of iMRI scans and shortening surgery time.
Collapse
Affiliation(s)
- Yuanzheng Hou
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ye Li
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Qiongge Li
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yang Yu
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jie Tang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- *Correspondence: Jie Tang,
| |
Collapse
|
13
|
Hou Y, Tang J. Advantages of Using 3D Intraoperative Ultrasound and Intraoperative MRI in Glioma Surgery. Front Oncol 2022; 12:925371. [PMID: 35719958 PMCID: PMC9203997 DOI: 10.3389/fonc.2022.925371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Yuanzheng Hou
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jie Tang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
14
|
Young F, Aquilina K, A Clark C, D Clayden J. Fibre tract segmentation for intraoperative diffusion MRI in neurosurgical patients using tract-specific orientation atlas and tumour deformation modelling. Int J Comput Assist Radiol Surg 2022; 17:1559-1567. [PMID: 35467322 PMCID: PMC9463357 DOI: 10.1007/s11548-022-02617-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/23/2022] [Indexed: 12/03/2022]
Abstract
Purpose: Intraoperative diffusion MRI could provide a means of visualising brain fibre tracts near a neurosurgical target after preoperative images have been invalidated by brain shift. We propose an atlas-based intraoperative tract segmentation method, as the standard preoperative method, streamline tractography, is unsuitable for intraoperative implementation. Methods: A tract-specific voxel-wise fibre orientation atlas is constructed from healthy training data. After registration with a target image, a radial tumour deformation model is applied to the orientation atlas to account for displacement caused by lesions. The final tract map is obtained from the inner product of the atlas and target image fibre orientation data derived from intraoperative diffusion MRI. Results: The simple tumour model takes only seconds to effectively deform the atlas into alignment with the target image. With minimal processing time and operator effort, maps of surgically relevant tracts can be achieved that are visually and qualitatively comparable with results obtained from streamline tractography. Conclusion: Preliminary results demonstrate feasibility of intraoperative streamline-free tract segmentation in challenging neurosurgical cases. Demonstrated results in a small number of representative sample subjects are realistic despite the simplicity of the tumour deformation model employed. Following this proof of concept, future studies will focus on achieving robustness in a wide range of tumour types and clinical scenarios, as well as quantitative validation of segmentations.
Collapse
Affiliation(s)
- Fiona Young
- Institute of Child Health, University College London, Guilford Street, London, United Kingdom.
| | - Kristian Aquilina
- Department of Neurosurgery, Great Ormond Street Hospital for Children, Great Ormond Street, London, United Kingdom
| | - Chris A Clark
- Department of Neurosurgery, Great Ormond Street Hospital for Children, Great Ormond Street, London, United Kingdom
| | - Jonathan D Clayden
- Institute of Child Health, University College London, Guilford Street, London, United Kingdom
| |
Collapse
|