1
|
Seppä P, Bonelli M, Dupont S, Hakala SM, Bagnères AG, Lorenzi MC. Strong Gene Flow Undermines Local Adaptations in a Host Parasite System. INSECTS 2020; 11:insects11090585. [PMID: 32882832 PMCID: PMC7564341 DOI: 10.3390/insects11090585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/12/2020] [Accepted: 08/26/2020] [Indexed: 11/20/2022]
Abstract
Simple Summary The co-evolution of hosts and parasites depends on their ability to adapt to each other’s defense and counter-defense mechanisms. The strength of selection on those mechanisms may vary among populations, resulting in a geographical mosaic of co-evolution. The boreo-montane paper wasp Polistes biglumis and its parasite Polistes atrimandibularis exemplify this type of co-evolutionary system. Here, we used genetic markers to examine the genetic population structures of these wasps in the western Alps. We found that both host and parasite populations displayed similar levels of genetic variation. In the host species, populations located near to each other were genetically similar; in both the host and the parasite species populations farther apart were significantly different. Thus, apparent dispersal barriers (i.e., high mountains) did not seem to restrict gene flow across populations as expected. Furthermore, there were no major differences in gene flow between the two species, perhaps because P. atrimandibularis parasitizes both alpine and lowland host species and annually migrates between alpine and lowland populations. The presence of strong gene flow in a system where local populations experience variable levels of selection pressure challenges the classical hypothesis that restricted gene flow is required for local adaptations to evolve. Abstract The co-evolutionary pathways followed by hosts and parasites strongly depend on the adaptive potential of antagonists and its underlying genetic architecture. Geographically structured populations of interacting species often experience local differences in the strength of reciprocal selection pressures, which can result in a geographic mosaic of co-evolution. One example of such a system is the boreo-montane social wasp Polistes biglumis and its social parasite Polistes atrimandibularis, which have evolved local defense and counter-defense mechanisms to match their antagonist. In this work, we study spatial genetic structure of P. biglumis and P. atrimandibularis populations at local and regional scales in the Alps, by using nuclear markers (DNA microsatellites, AFLP) and mitochondrial sequences. Both the host and the parasite populations harbored similar amounts of genetic variation. Host populations were not genetically structured at the local scale, but geographic regions were significantly differentiated from each other in both the host and the parasite in all markers. The net dispersal inferred from genetic differentiation was similar in the host and the parasite, which may be due to the annual migration pattern of the parasites between alpine and lowland populations. Thus, the apparent dispersal barriers (i.e., high mountains) do not restrict gene flow as expected and there are no important gene flow differences between the species, which contradict the hypothesis that restricted gene flow is required for local adaptations to evolve.
Collapse
Affiliation(s)
- Perttu Seppä
- Centre of Excellence in Biological Interactions, Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, University of Helsinki, P.O. Box 65, 00014 Helsinki, Finland;
- Correspondence:
| | - Mariaelena Bonelli
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Torino, Italy; (M.B.); (M.C.L.)
- Institut de Recherche sur la Biologie de l’Insecte, UMR 7261, CNRS—Université de Tours, Avenue Monge, Parc Grandmont, 37200 Tours, France; (S.D.); (A.-G.B.)
| | - Simon Dupont
- Institut de Recherche sur la Biologie de l’Insecte, UMR 7261, CNRS—Université de Tours, Avenue Monge, Parc Grandmont, 37200 Tours, France; (S.D.); (A.-G.B.)
| | - Sanja Maria Hakala
- Centre of Excellence in Biological Interactions, Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, University of Helsinki, P.O. Box 65, 00014 Helsinki, Finland;
| | - Anne-Geneviève Bagnères
- Institut de Recherche sur la Biologie de l’Insecte, UMR 7261, CNRS—Université de Tours, Avenue Monge, Parc Grandmont, 37200 Tours, France; (S.D.); (A.-G.B.)
- Centre d’Ecologie Fonctionnelle et Evolutive, CNRS UMR5175, Université Montpellier, Université Paul Valery Montpellier 3, EPHE, IRD, 34293 Montpellier, France
| | - Maria Cristina Lorenzi
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Torino, Italy; (M.B.); (M.C.L.)
- Laboratory of Experimental and Comparative Ethology (LEEC), University of Sorbonne Paris Nord, 93430 Villetaneuse, France
| |
Collapse
|
2
|
Bluher SE, Miller SE, Sheehan MJ. Fine-Scale Population Structure but Limited Genetic Differentiation in a Cooperatively Breeding Paper Wasp. Genome Biol Evol 2020; 12:701-714. [PMID: 32271866 PMCID: PMC7259676 DOI: 10.1093/gbe/evaa070] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2020] [Indexed: 12/16/2022] Open
Abstract
Relatively little is known about the processes shaping population structure in cooperatively breeding insect species, despite the long-hypothesized importance of population structure in shaping patterns of cooperative breeding. Polistes paper wasps are primitively eusocial insects, with a cooperative breeding system in which females often found nests in cooperative associations. Prior mark-recapture studies of Polistes have documented extreme female philopatry, although genetic studies frequently fail to detect the strong population structure expected for highly philopatric species. Together these findings have led to lack of consensus on the degree of dispersal and population structure in these species. This study assessed population structure of female Polistes fuscatus wasps at three scales: within a single site, throughout Central New York, and across the Northeastern United States. Patterns of spatial genetic clustering and isolation by distance were observed in nuclear and mitochondrial genomes at the continental scale. Remarkably, population structure was evident even at fine spatial scales within a single collection site. However, P. fuscatus had low levels of genetic differentiation across long distances. These results suggest that P. fuscatus wasps may employ multiple dispersal strategies, including extreme natal philopatry as well as longer-distance dispersal. We observed greater genetic differentiation in mitochondrial genes than in the nuclear genome, indicative of increased dispersal distances in males. Our findings support the hypothesis that limited female dispersal contributes toward population structure in paper wasps.
Collapse
Affiliation(s)
- Sarah E Bluher
- Department of Neurobiology and Behavior, Cornell University
| | - Sara E Miller
- Department of Neurobiology and Behavior, Cornell University
| | | |
Collapse
|
3
|
Kozyra KB, Melosik I, Baraniak E. Genetic diversity and population structure of Polistes nimpha based on DNA microsatellite markers. INSECTES SOCIAUX 2015; 62:423-432. [PMID: 27034509 PMCID: PMC4768218 DOI: 10.1007/s00040-015-0421-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 05/18/2015] [Accepted: 05/27/2015] [Indexed: 06/05/2023]
Abstract
The Eurasiatic Polistes nimpha belongs to primitively eusocial wasps for which no data are available on its population's genetic structure and relatedness/relationships of individuals. The purpose of this research is to determine the amplification efficiency in P. nimpha of microsatellite primers developed for P. dominula and using these primers, to explore genetic diversity, population structure and relatedness/relationship of P. nimpha in the context of its reproductive options. Eight out of twelve microsatellite markers analyzed on 59 individuals (pupae and larvae) were polymorphic (mean PIC = 0.545) and mutated following the stepwise mutation model. The Bayesian clustering method gave the probability of >0.898 of there being 10 clusters within the pooled sample of 15 nests. In two or three nest clusters, full- and/or half-siblings and unrelated individuals occurred. A significant correlation between genetic and geographic distances was detected. There are three main possibilities that come into play to explain our genetic results and direct field observations: cooperative nest foundation, visitations, and/or usurpation events. So far there is no conclusive evidence to exclude or support any of these possibilities.
Collapse
Affiliation(s)
- K. B. Kozyra
- />Department of Systematic Zoology, Adam Mickiewicz University in Poznań, Umultowska Str. 89, 61-614 Poznań, Poland
| | - I. Melosik
- />Department of Genetics, Faculty of Biology, Adam Mickiewicz University in Poznań, Umultowska Str. 89, 61-614 Poznań, Poland
| | - E. Baraniak
- />Department of Systematic Zoology, Adam Mickiewicz University in Poznań, Umultowska Str. 89, 61-614 Poznań, Poland
| |
Collapse
|