1
|
Sun Y, Cheng Y, Hertz DL. Using maximum plasma concentration (C max) to personalize taxane treatment and reduce toxicity. Cancer Chemother Pharmacol 2024; 93:525-539. [PMID: 38734836 DOI: 10.1007/s00280-024-04677-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
Taxanes are a widely used class of anticancer agents that play a vital role in the treatment of a variety of cancers. However, toxicity remains a major concern of using taxane drugs as some toxicities are highly prevalent, they can not only adversely affect patient prognosis but also compromise the overall treatment plan. Among all kinds of factors that associated with taxane toxicity, taxane exposure has been extensively studied, with different pharmacokinetic (PK) parameters being used as toxicity predictors. Compared to other widely used predictors such as the area under the drug plasma concentration curve versus time (AUC) and time above threshold plasma drug concentration, maximum plasma concentration (Cmax) is easier to collect and shows promise for use in clinical practice. In this article, we review the previous research on using Cmax to predict taxane treatment outcomes. While Cmax and toxicity have been extensively studied, research on the relationship between Cmax and efficacy is lacking. Most of the articles find a positive relationship between Cmax and toxicity but several articles have contradictory findings. Future clinical trials are needed to validate the relationship between Cmax and treatment outcome and determine whether Cmax can serve as a useful surrogate endpoint of taxane treatment efficacy.
Collapse
Affiliation(s)
- Yuchen Sun
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI, USA
| | - Yue Cheng
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI, USA
| | - Daniel L Hertz
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI, USA.
| |
Collapse
|
2
|
Zhao Y, Wang X, Liu Y, Wang HY, Xiang J. The effects of estrogen on targeted cancer therapy drugs. Pharmacol Res 2022; 177:106131. [DOI: 10.1016/j.phrs.2022.106131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/29/2022] [Accepted: 02/10/2022] [Indexed: 10/19/2022]
|
3
|
Optimized Dosing: The Next Step in Precision Medicine in Non-Small-Cell Lung Cancer. Drugs 2021; 82:15-32. [PMID: 34894338 DOI: 10.1007/s40265-021-01654-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2021] [Indexed: 12/20/2022]
Abstract
In oncology, and especially in the treatment of non-small-cell lung cancer (NSCLC), dose optimization is often a neglected part of precision medicine. Many drugs are still being administered in "one dose fits all" regimens or based on parameters that are often only minor determinants for systemic exposure. These dosing approaches often introduce additional pharmacokinetic variability and do not add to treatment outcomes. Fortunately, pharmacological knowledge is increasing, providing valuable information regarding the potential of, for example, therapeutic drug monitoring. This article focuses on the evidence for the most promising and easily implemented optimized dosing approaches for the small-molecule inhibitors, chemotherapeutic agents, and monoclonal antibodies as treatment options currently approved for NSCLC. Despite limitations such as investigations having been conducted in oncological diseases other than NSCLC or the retrospective origin of many analyses, an alternative dosing regimen could be beneficial for treatment outcomes, prescriber convenience, or financial burden on healthcare systems. This review of the literature provides recommendations on the implementation of dose optimization and advice regarding promising strategies that deserve further research in NSCLC.
Collapse
|
4
|
Sharma S, Deep A, Sharma AK. Current Treatment for Cervical Cancer: An Update. Anticancer Agents Med Chem 2021; 20:1768-1779. [PMID: 32091347 DOI: 10.2174/1871520620666200224093301] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/26/2019] [Accepted: 11/12/2019] [Indexed: 12/25/2022]
Abstract
Cervical cancer is the leading gynecologic health problem which is considered as the 4th most widespread tumour in women. The prevalence of this fatal ailment is emerging gradually across the globe as about 18.1 million new cancer cases have been reported in 2018. The predominance of cervical cancer has been significantly found in low and middle-income countries as cervical cancer ranks fourth for both incidence and mortality, conversely, there are no effective screening systems available. This mortal state is certainly influenced by exposure of human papillomavirus, dysregulation of caspase enzyme, elevated expression of Inhibitor Apoptotic Protein (IAP), overexpression of Vascular Endothelial Growth Factors (VEGF), active/passive smoking, and dysfunction of the immune system. Generally, the clinical trial on pipeline drugs leads to the development of some promising new therapies that are more effective than standard approaches and often unavailable outside of the clinical setting. Indeed, several biological interventions that can modulate the pathological cascade of cervical cancer are still under investigation. Thus, there is a need to further summarise the promising therapies for cervical cancer as we have accomplished in HER2-positive breast cancer by targeting HER2 therapies and immune checkpoint inhibitors in melanoma. The present report revealed the pharmacokinetic/ pharmacodynamics aspects of various pipeline drugs that are promising for the treatment of cervical cancer. Moreover, the study revealed the possible mechanism, adverse drug reaction, combined therapy and pleiotropic action of these under investigational drugs, which can further improve the therapeutic efficacy and restrict the imaginable harmful effects.
Collapse
Affiliation(s)
- Sombeer Sharma
- Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani-127021, Haryana, India
| | - Aakash Deep
- Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani-127021, Haryana, India
| | - Arun K Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University, Haryana-122413, India
| |
Collapse
|
5
|
Hertz DL. Exploring pharmacogenetics of paclitaxel- and docetaxel-induced peripheral neuropathy by evaluating the direct pharmacogenetic-pharmacokinetic and pharmacokinetic-neuropathy relationships. Expert Opin Drug Metab Toxicol 2021; 17:227-239. [PMID: 33401943 DOI: 10.1080/17425255.2021.1856367] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Peripheral neuropathy (PN) is an adverse effect of several classes of chemotherapy including the taxanes. Predictive PN biomarkers could inform individualized taxane treatment to reduce PN and enhance therapeutic outcomes. Pharmacogenetics studies of taxane-induced PN have focused on genes involved in pharmacokinetics, including enzymes and transporters. Contradictory findings from these studies prevent translation of genetic biomarkers into clinical practice. Areas covered: This review discusses the progress toward identifying pharmacogenetic predictors of PN by assessing the evidence for two independent associations; the effect of pharmacogenetics on taxane pharmacokinetics and the evidence that taxane pharmacokinetics affects PN. Assessing these direct relationships allows the reader to understand the progress toward individualized taxane treatment and future research opportunities. Expert opinion: Paclitaxel pharmacokinetics is a major determinant of PN. Additional clinical trials are needed to confirm the clinical benefit of individualized dosing to achieve target paclitaxel exposure. Genetics does not meaningfully contribute to paclitaxel pharmacokinetics and may not be useful to inform dosing. However, genetics may contribute to PN sensitivity and could be useful for estimating patients' optimal paclitaxel exposure. For docetaxel, genetics has not been demonstrated to have a meaningful effect on pharmacokinetics and there is no evidence that pharmacokinetics determines PN.
Collapse
Affiliation(s)
- Daniel L Hertz
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy , Ann Arbor, MI, United States
| |
Collapse
|
6
|
Yano I. [Clinical Pharmacometrics for Rational Drug Treatment]. YAKUGAKU ZASSHI 2019; 139:1227-1234. [PMID: 31582605 DOI: 10.1248/yakushi.19-00124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pharmacometrics is the mathematical study of pharmacokinetics, disease progression, and clinical outcomes. One objective of pharmacometrics is to facilitate rational drug treatment in patients, also termed clinical pharmacometrics. In this review, our clinical pharmacometric studies conducted over the last 10 years are discussed. Population pharmacokinetic analysis using therapeutic monitoring data for levetiracetam revealed that oral clearance allometrically scaled to both body weight and estimated glomerular filtration rate can accurately predict clinical data from patients of various ages (pediatric to elderly) with varying renal function. Dosage adjustments based on renal function in the package information are effective in controlling the trough and peak concentrations in similar ranges. In addition, a retrospective pharmacokinetic and pharmacodynamic study revealed that the efficacy of low-dose clobazam therapy was significantly influenced by CYP2C19 polymorphisms. Pharmacokinetic and pharmacodynamic models were successfully built using electronic medical information to explain retrospective international normalized ratio values of prothrombin time before and after catheter ablation in warfarin-treated patients. Simulation studies suggest that more than 20 mg of vitamin K2 is unnecessary in the preoperative period of catheter ablation. A physiologically based pharmacokinetic model adapted to tacrolimus pharmacokinetic data in patients who underwent living-donor liver transplantation was constructed, and clarified that oral clearance of this drug was affected by CYP3A5 genotypes in both the liver and intestine to the same extent. In conclusion, pharmacometrics is a useful methodology for individualized and optimized drug therapy.
Collapse
Affiliation(s)
- Ikuko Yano
- Department of Pharmacy, Kobe University Hospital
| |
Collapse
|
7
|
Prediction of neutrophil reduction using plasma paclitaxel concentration after administration in patients with uterine, ovarian, or cervical cancers in an outpatient clinic. Cancer Chemother Pharmacol 2018; 81:399-411. [DOI: 10.1007/s00280-017-3506-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 12/25/2017] [Indexed: 10/18/2022]
|
8
|
Ghafouri H, Ghaderi B, Amini S, Nikkhoo B, Abdi M, Hoseini A. Association of ABCB1 and ABCG2 single nucleotide polymorphisms with clinical findings and response to chemotherapy treatments in Kurdish patients with breast cancer. Tumour Biol 2016; 37:7901-7906. [DOI: 10.1007/s13277-015-4679-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 12/16/2015] [Indexed: 12/22/2022] Open
|
9
|
Wolking S, Schaeffeler E, Lerche H, Schwab M, Nies AT. Impact of Genetic Polymorphisms of ABCB1 (MDR1, P-Glycoprotein) on Drug Disposition and Potential Clinical Implications: Update of the Literature. Clin Pharmacokinet 2016; 54:709-35. [PMID: 25860377 DOI: 10.1007/s40262-015-0267-1] [Citation(s) in RCA: 188] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
ATP-binding cassette transporter B1 (ABCB1; P-glycoprotein; multidrug resistance protein 1) is an adenosine triphosphate (ATP)-dependent efflux transporter located in the plasma membrane of many different cell types. Numerous structurally unrelated compounds, including drugs and environmental toxins, have been identified as substrates. ABCB1 limits the absorption of xenobiotics from the gut lumen, protects sensitive tissues (e.g. the brain, fetus and testes) from xenobiotics and is involved in biliary and renal secretion of its substrates. In recent years, a large number of polymorphisms of the ABCB1 [ATP-binding cassette, sub-family B (MDR/TAP), member 1] gene have been described. The variants 1236C>T (rs1128503, p.G412G), 2677G>T/A (rs2032582, p.A893S/T) and 3435C>T (rs1045642, p.I1145I) occur at high allele frequencies and create a common haplotype; therefore, they have been most widely studied. This review provides an overview of clinical studies published between 2002 and March 2015. In summary, the effect of ABCB1 variation on P-glycoprotein expression (messenger RNA and protein expression) and/or activity in various tissues (e.g. the liver, gut and heart) appears to be small. Although polymorphisms and haplotypes of ABCB1 have been associated with alterations in drug disposition and drug response, including adverse events with various ABCB1 substrates in different ethnic populations, the results have been majorly conflicting, with limited clinical relevance. Future research activities are warranted, considering a deep-sequencing approach, as well as well-designed clinical studies with appropriate sample sizes to elucidate the impact of rare ABCB1 variants and their potential consequences for effect sizes.
Collapse
Affiliation(s)
- Stefan Wolking
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Hoppe-Seyler Strasse 3, 72076, Tübingen, Germany
| | | | | | | | | |
Collapse
|
10
|
Hertz DL. Germline pharmacogenetics of paclitaxel for cancer treatment. Pharmacogenomics 2014; 14:1065-84. [PMID: 23837481 DOI: 10.2217/pgs.13.90] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Paclitaxel is a highly effective chemotherapeutic agent used in a variety of solid tumors. Some paclitaxel-treated patients experience the intended therapeutic response with manageable side effects, while others have minimal response and/or severe toxicity. This variability in treatment outcome is partially determined by variability in drug exposure (pharmacokinetics) and by patient and tumor sensitivity (pharmacodynamics). Both pharmacokinetics and pharmacodynamics are dictated in part by common variants in the germline genome, known as SNPs. This article reviews the published literature on paclitaxel pharmacogenetics in cancer, focusing primarily on polymorphisms in genes relevant to paclitaxel pharmacokinetics and discusses preliminary work on pharmacodynamic genes and genome-wide association studies.
Collapse
Affiliation(s)
- Daniel L Hertz
- Department of Clinical, Social, & Administrative Sciences, University of Michigan College of Pharmacy, Ann Arbor, MI, USA.
| |
Collapse
|
11
|
Development and Evaluation of a Nanoparticle-Based Immunoassay for Determining Paclitaxel Concentrations on Routine Clinical Analyzers. Ther Drug Monit 2013; 35:809-15. [DOI: 10.1097/ftd.0b013e318296be01] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Krens SD, McLeod HL, Hertz DL. Pharmacogenetics, enzyme probes and therapeutic drug monitoring as potential tools for individualizing taxane therapy. Pharmacogenomics 2013; 14:555-74. [PMID: 23556452 DOI: 10.2217/pgs.13.33] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The taxanes are a class of chemotherapeutic agents that are widely used in the treatment of various solid tumors. Although taxanes are highly effective in cancer treatment, their use is associated with serious complications attributable to large interindividual variability in pharmacokinetics and a narrow therapeutic window. Unpredictable toxicity occurrence necessitates close patient monitoring while on therapy and adverse effects frequently require decreasing, delaying or even discontinuing taxane treatment. Currently, taxane dosing is based primarily on body surface area, ignoring other factors that are known to dictate variability in pharmacokinetics or outcome. This article discusses three potential strategies for individualizing taxane treatment based on patient information that can be collected before or during care. The clinical implementation of pharmacogenetics, enzyme probes or therapeutic drug monitoring could enable clinicians to personalize taxane treatment to enhance efficacy and/or limit toxicity.
Collapse
Affiliation(s)
- Stefanie D Krens
- UNC Institute for Pharmacogenomics & Individualized Therapy, University of North Carolina at Chapel Hill, 120 Mason Farm Road, CB 7361, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
13
|
Jabir RS, Naidu R, Annuar MABA, Ho GF, Munisamy M, Stanslas J. Pharmacogenetics of taxanes: impact of gene polymorphisms of drug transporters on pharmacokinetics and toxicity. Pharmacogenomics 2013; 13:1979-88. [PMID: 23215890 DOI: 10.2217/pgs.12.165] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Interindividual variability in drug response and the emergence of adverse drug effects are the main causes of treatment failure in cancer therapy. Functional membrane drug transporters play important roles in altering pharmacokinetic profile, resistance to treatment, toxicity and patient survival. Pharmacogenetic studies of these transporters are expected to provide new approaches for optimizing therapy. Taxanes are approved for the treatment of various cancers. Circulating taxanes are taken up by SLCO1B3 into hepatocytes. The CYP450 enzymes CYP3A4, CYP3A5 and CYP2C8 are responsible for the conversion of taxanes into their metabolites. Ultimately, ABCB1 and ABCC2 will dispose the metabolites into bile canaliculi. Polymorphisms of genes encoding for proteins involved in the transport and clearance of taxanes reduce excretion of the drugs, leading to development of toxicity in patients. This review addresses current knowledge on genetic variations of transporters affecting taxanes pharmacokinetics and toxicity, and provides insights into future direction for personalized medicine.
Collapse
Affiliation(s)
- Rafid Salim Jabir
- Pharmacotherapeutics Unit, Department of Medicine & Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | | | | | | | | | | |
Collapse
|
14
|
Evaluation of a Pharmacology-Driven Dosing Algorithm of 3-Weekly Paclitaxel Using Therapeutic Drug Monitoring. Clin Pharmacokinet 2012; 51:607-17. [DOI: 10.1007/bf03261934] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
15
|
Lack of association between MDR1 C3435T polymorphism and chemotherapy response in advanced breast cancer patients: evidence from current studies. Mol Biol Rep 2011; 39:5161-8. [PMID: 22160574 DOI: 10.1007/s11033-011-1312-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 11/30/2011] [Indexed: 12/23/2022]
Abstract
The transmembrane transport of anticancer drugs is mainly regulated by P-glycoprotein encoded by the human multidrug resistance gene 1 gene (MDR1). Since there were controversies regarding the association between MDR1 C3435T polymorphism and response to chemotherapy among patients with advanced breast cancer, a meta-analysis of the link was conducted. A total of 7 studies consist of 464 advanced breast cancer patients relating MDR1 C3435T polymorphism to the response of chemotherapy were included in this meta-analysis. The main analysis revealed a lack of association between the MDR1 C3435T and response to chemotherapy, with odds ratios (ORs) and their corresponding 95% confidence intervals (CIs) of 1.37 (95% CI: 0.78-2.40), 1.17 (95% CI: 0.69-2.01), 1.18 (95% CI: 0.76-1.84) and 1.61 (95% CI: 0.70-3.68) for homozygous comparison, heterozygous comparison, dominant model and recessive model, respectively. The subgroup analysis by ethnicity did not change the pattern of results, with ORs of 0.99 (95% CI: 0.11-9.07), 0.68 (95% CI: 0.29-1.60), 0.81 (95% CI: 0.36-1.85) and 1.51 (95% CI: 0.77-2.96), in homozygous comparison, heterozygous comparison, dominant model and recessive model, respectively in Caucasian, and 1.50 (95% CI: 0.75-3.03), 1.72 (95% CI: 0.85-3.47), 1.59 (95% CI: 0.90-2.80) and 2.29 (95% CI: 0.51-10.35), respectively in Asian. The available evidence indicates that MDR1 C3435T polymorphism cannot be considered as a reliable predictor of response to chemotherapy in patients with advanced breast cancer.
Collapse
|
16
|
Gerritsen-van Schieveen P, Royer B. Level of evidence for therapeutic drug monitoring of taxanes. Fundam Clin Pharmacol 2010; 25:414-24. [DOI: 10.1111/j.1472-8206.2010.00874.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Schieveen PGV, Royer B. Niveau de preuve du suivi thérapeutique pharmacologique du paclitaxel. Therapie 2010; 65:195-200. [DOI: 10.2515/therapie/2010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Accepted: 03/03/2010] [Indexed: 11/20/2022]
|
18
|
Daily EB, Aquilante CL. Cytochrome P450 2C8 pharmacogenetics: a review of clinical studies. Pharmacogenomics 2009; 10:1489-510. [PMID: 19761371 DOI: 10.2217/pgs.09.82] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cytochrome P450 (CYP) 2C8 is responsible for the oxidative metabolism of many clinically available drugs from a diverse number of drug classes (e.g., thiazolidinediones, meglitinides, NSAIDs, antimalarials and chemotherapeutic taxanes). The CYP2C8 enzyme is encoded by the CYP2C8 gene, and several common nonsynonymous polymorphisms (e.g., CYP2C8*2 and CYP2C8*3) exist in this gene. The CYP2C8*2 and *3 alleles have been associated in vitro with decreased metabolism of paclitaxel and arachidonic acid. Recently, the influence of CYP2C8 polymorphisms on substrate disposition in humans has been investigated in a number of clinical pharmacogenetic studies. Contrary to in vitro data, clinical data suggest that the CYP2C8*3 allele is associated with increased metabolism of the CYP2C8 substrates, rosiglitazone, pioglitazone and repaglinide. However, the CYP2C8*3 allele has not been associated with paclitaxel pharmacokinetics in most clinical studies. Furthermore, clinical data regarding the impact of the CYP2C8*3 allele on the disposition of NSAIDs are conflicting and no definitive conclusions can be made at this time. The purpose of this review is to highlight these clinical studies that have investigated the association between CYP2C8 polymorphisms and CYP2C8 substrate pharmacokinetics and/or pharmacodynamics in humans. In this review, CYP2C8 clinical pharmacogenetic data are provided by drug class, followed by a discussion of the future of CYP2C8 clinical pharmacogenetic research.
Collapse
Affiliation(s)
- Elizabeth B Daily
- Department of Pharmaceutical Sciences, University of Colorado Denver, School of Pharmacy, Aurora, CO 80045, USA
| | | |
Collapse
|
19
|
Zhou SF, Liu JP, Chowbay B. Polymorphism of human cytochrome P450 enzymes and its clinical impact. Drug Metab Rev 2009; 41:89-295. [PMID: 19514967 DOI: 10.1080/03602530902843483] [Citation(s) in RCA: 541] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Pharmacogenetics is the study of how interindividual variations in the DNA sequence of specific genes affect drug response. This article highlights current pharmacogenetic knowledge on important human drug-metabolizing cytochrome P450s (CYPs) to understand the large interindividual variability in drug clearance and responses in clinical practice. The human CYP superfamily contains 57 functional genes and 58 pseudogenes, with members of the 1, 2, and 3 families playing an important role in the metabolism of therapeutic drugs, other xenobiotics, and some endogenous compounds. Polymorphisms in the CYP family may have had the most impact on the fate of therapeutic drugs. CYP2D6, 2C19, and 2C9 polymorphisms account for the most frequent variations in phase I metabolism of drugs, since almost 80% of drugs in use today are metabolized by these enzymes. Approximately 5-14% of Caucasians, 0-5% Africans, and 0-1% of Asians lack CYP2D6 activity, and these individuals are known as poor metabolizers. CYP2C9 is another clinically significant enzyme that demonstrates multiple genetic variants with a potentially functional impact on the efficacy and adverse effects of drugs that are mainly eliminated by this enzyme. Studies into the CYP2C9 polymorphism have highlighted the importance of the CYP2C9*2 and *3 alleles. Extensive polymorphism also occurs in other CYP genes, such as CYP1A1, 2A6, 2A13, 2C8, 3A4, and 3A5. Since several of these CYPs (e.g., CYP1A1 and 1A2) play a role in the bioactivation of many procarcinogens, polymorphisms of these enzymes may contribute to the variable susceptibility to carcinogenesis. The distribution of the common variant alleles of CYP genes varies among different ethnic populations. Pharmacogenetics has the potential to achieve optimal quality use of medicines, and to improve the efficacy and safety of both prospective and currently available drugs. Further studies are warranted to explore the gene-dose, gene-concentration, and gene-response relationships for these important drug-metabolizing CYPs.
Collapse
Affiliation(s)
- Shu-Feng Zhou
- School of Health Sciences, RMIT University, Bundoora, Victoria, Australia.
| | | | | |
Collapse
|
20
|
Foss M, Wilcox BWL, Alsop GB, Zhang D. Taxol crystals can masquerade as stabilized microtubules. PLoS One 2008; 3:e1476. [PMID: 18213384 PMCID: PMC2194920 DOI: 10.1371/journal.pone.0001476] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Accepted: 12/14/2007] [Indexed: 12/01/2022] Open
Abstract
Taxol is a potent anti-mitotic drug used in chemotherapy, angioplastic stents, and cell biology research. By binding and stabilizing microtubules, Taxol inhibits their dynamics, crucial for cell division, motility, and survival. The drug has also been reported to induce formation of asters and bundles composed of stabilized microtubules. Surprisingly, at commonly used concentrations, Taxol forms crystals that rapidly bind fluorescent tubulin subunits, generating structures with an uncanny resemblance to microtubule asters and bundles. Kinetic and topological considerations suggest that tubulin subunits, rather than microtubules, bind the crystals. This sequestration of tubulin from the subunit pool would be expected to shift the equilibrium of free to polymerized tubulin to disfavor assembly. Our results imply that some previously reported Taxol-induced asters or bundles could include or be composed of tubulin-decorated Taxol crystals. Thus, reevaluation of certain morphological, chemical, and physical properties of Taxol-treated microtubules may be necessary. Moreover, our findings suggest a novel mechanism for chemotherapy-induced cytotoxicity in non-dividing cells, with far-reaching medical implications.
Collapse
Affiliation(s)
- Margit Foss
- Department of Zoology, Oregon State University, Corvallis, Oregon, United States of America
| | - Buck W. L. Wilcox
- Molecular and Cellular Biology Program, Oregon State University, Corvallis, Oregon, United States of America
| | - G. Bradley Alsop
- Molecular and Cellular Biology Program, Oregon State University, Corvallis, Oregon, United States of America
| | - Dahong Zhang
- Department of Zoology, Oregon State University, Corvallis, Oregon, United States of America
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|