1
|
Torres-Gutiérrez M, Lozano-Suárez N, Burgos-Camacho VA, Caamaño-Jaraba J, Gómez-Montero JA, García-López A, Girón-Luque F. Is Non-Adherence Associated with Adverse Outcomes in Kidney Transplant Recipients? The Role of Non-Adherence as a Risk and Predictor Factor for Graft Loss and Death. Patient Prefer Adherence 2023; 17:2915-2925. [PMID: 38027086 PMCID: PMC10648956 DOI: 10.2147/ppa.s436833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 11/02/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Non-adherence in kidney transplants is diversely defined. Immunosuppression non-adherence (INA) is the most used definition and has been associated with graft loss and acute rejection. But INA assesses only one fraction of adherence. Therefore, we analyzed the association of a holistic non-adherence definition with transplant outcomes and compared its prediction performance with other definitions. Methods We retrospectively included 739 kidney recipients between 2019 and 2021. We evaluated holistic non-adherence (HNA), suboptimal-immunosuppressor levels (SIL), appointment non-adherence (ANA), procedure non-adherence (PNA) and INA. The main outcomes were graft loss, graft rejection, and mortality. A backward logistic regression was performed estimating adjusted and un-adjusted odds ratio (OR) for each outcome. Finally, we compared the non-adherence definitions' prediction for the main outcomes using the area under the curve. Results HNA was present in 28.7% of patients. Non-adherent patients had an adjusted OR of 2.66 (1.37-5.15) for mortality, 6.44 for graft loss (2.71-16.6), and 2.28 (1.15-4.47) for graft rejection. INA and PNA presented a moderate discrimination for graft loss and HNA and ANA mild-to-moderate discrimination for graft loss and death. Conclusion Holistic non-adherence was associated with worst outcomes in kidney recipients and had a significant prediction performance for graft loss and mortality.
Collapse
Affiliation(s)
| | | | | | | | | | - Andrea García-López
- Department of Transplant Research, Colombiana de Trasplantes, Bogotá, Colombia
| | - Fernando Girón-Luque
- Department of Transplant Research, Colombiana de Trasplantes, Bogotá, Colombia
- Department of Transplant Surgery, Colombiana de Trasplantes, Bogotá, Colombia
| |
Collapse
|
2
|
Cloning and characterisation of NMDA receptors in the Pacific oyster, Crassostrea gigas (Thunberg, 1793) in relation to metamorphosis and catecholamine synthesis. Dev Biol 2020; 469:144-159. [PMID: 33131707 DOI: 10.1016/j.ydbio.2020.10.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/19/2020] [Accepted: 10/19/2020] [Indexed: 01/30/2023]
Abstract
Bivalve metamorphosis is a developmental transition from a free-living larva to a benthic juvenile (spat), regulated by a complex interaction of neurotransmitters and neurohormones such as L-DOPA and epinephrine (catecholamine). We recently suggested an N-Methyl-D-aspartate (NMDA) receptor pathway as an additional and previously unknown regulator of bivalve metamorphosis. To explore this theory further, we successfully induced metamorphosis in the Pacific oyster, Crassostrea gigas, by exposing competent larvae to L-DOPA, epinephrine, MK-801 and ifenprodil. Subsequently, we cloned three NMDA receptor subunits CgNR1, CgNR2A and CgNR2B, with sequence analysis suggesting successful assembly of functional NMDA receptor complexes and binding to natural occurring agonists and the channel blocker MK-801. NMDA receptor subunits are expressed in competent larvae, during metamorphosis and in spat, but this expression is neither self-regulated nor regulated by catecholamines. In-situ hybridisation of CgNR1 in competent larvae identified NMDA receptor presence in the apical organ/cerebral ganglia area with a potential sensory function, and in the nervous network of the foot indicating an additional putative muscle regulatory function. Furthermore, phylogenetic analyses identified molluscan-specific gene expansions of key enzymes involved in catecholamine biosynthesis. However, exposure to MK-801 did not alter the expression of selected key enzymes, suggesting that NMDA receptors do not regulate the biosynthesis of catecholamines via gene expression.
Collapse
|
3
|
Lybrand ZR, Martinez-Acosta VG, Zoran MJ. Coupled sensory interneurons mediate escape neural circuit processing in an aquatic annelid worm, Lumbriculus variegatus. J Comp Neurol 2020; 528:468-480. [PMID: 31502251 DOI: 10.1002/cne.24769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/25/2019] [Accepted: 08/30/2019] [Indexed: 11/08/2022]
Abstract
The interneurons associated with rapid escape circuits are adapted for fast pathway activation and rapid conduction. An essential aspect of fast activation is the processing of sensory information with limited delays. Although aquatic annelid worms have some of the fastest escape responses in nature, the sensory networks that mediate their escape behavior are not well defined. Here, we demonstrate that the escape circuit of the mud worm, Lumbriculus variegatus, is a segmentally arranged network of sensory interneurons electrically coupled to the central medial giant fiber (MGF), the command-like interneuron for head withdrawal. Electrical stimulation of the body wall evoked fast, short-duration spikelets in the MGF, which we suggest are the product of intermediate giant fiber activation coupled to MGF collateral dendrites. Since these contact sites have immunoreactivity with a glutamate receptor antibody, and the glutamate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dion abolishes evoked MGF responses, we conclude that the afferent pathway for MGF-mediated escape is glutamatergic. This electrically coupled sensory network may facilitate rapid escape activation by enhancing the amplitude of giant axon depolarization.
Collapse
Affiliation(s)
- Zane R Lybrand
- Department of Biology, University of Texas, San Antonio, Texas
| | | | - Mark J Zoran
- Department of Biology, Texas A&M University, College Station, Texas
| |
Collapse
|
4
|
Welzel G, Schuster S. Long-term potentiation in an innexin-based electrical synapse. Sci Rep 2018; 8:12579. [PMID: 30135467 PMCID: PMC6105662 DOI: 10.1038/s41598-018-30966-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 08/09/2018] [Indexed: 11/08/2022] Open
Abstract
Electrical synapses are formed by two unrelated gap junction protein families, the primordial innexins (invertebrates) or the connexins (vertebrates). Although molecularly different, innexin- and connexin-based electrical synapses are strikingly similar in their membrane topology. However, it remains unclear if this similarity extends also to more sophisticated functions such as long-term potentiation which is only known in connexin-based synapses. Here we show that this capacity is not unique to connexin-based synapses. Using a method that allowed us to quantitatively measure gap-junction conductance we provide the first and unequivocal evidence of long-term potentiation in an innexin-based electrical synapse. Our findings suggest that long-term potentiation is a property that has likely existed already in ancestral gap junctions. They therefore could provide a highly potent system to dissect shared molecular mechanisms of electrical synapse plasticity.
Collapse
Affiliation(s)
- Georg Welzel
- Department of Animal Physiology, University of Bayreuth, 95440, Bayreuth, Germany.
| | - Stefan Schuster
- Department of Animal Physiology, University of Bayreuth, 95440, Bayreuth, Germany.
| |
Collapse
|
5
|
Northcutt AJ, Fischer EK, Puhl JG, Mesce KA, Schulz DJ. An annotated CNS transcriptome of the medicinal leech, Hirudo verbana: De novo sequencing to characterize genes associated with nervous system activity. PLoS One 2018; 13:e0201206. [PMID: 30028871 PMCID: PMC6054404 DOI: 10.1371/journal.pone.0201206] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/10/2018] [Indexed: 11/19/2022] Open
Abstract
The medicinal leech is one of the most venerated model systems for the study of fundamental nervous system principles, ranging from single-cell excitability to complex sensorimotor integration. Yet, molecular analyses have yet to be extensively applied to complement the rich history of electrophysiological study that this animal has received. Here, we generated the first de novo transcriptome assembly from the entire central nervous system of Hirudo verbana, with the goal of providing a molecular resource, as well as to lay the foundation for a comprehensive discovery of genes fundamentally important for neural function. Our assembly generated 107,704 contigs from over 900 million raw reads. Of these 107,704 contigs, 39,047 (36%) were annotated using NCBI's validated RefSeq sequence database. From this annotated central nervous system transcriptome, we began the process of curating genes related to nervous system function by identifying and characterizing 126 unique ion channel, receptor, transporter, and enzyme contigs. Additionally, we generated sequence counts to estimate the relative abundance of each identified ion channel and receptor contig in the transcriptome through Kallisto mapping. This transcriptome will serve as a valuable community resource for studies investigating the molecular underpinnings of neural function in leech and provide a reference for comparative analyses.
Collapse
Affiliation(s)
- Adam J. Northcutt
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, Missouri, United States of America
| | - Eva K. Fischer
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Joshua G. Puhl
- Department of Entomology and Graduate Program in Neuroscience, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Karen A. Mesce
- Department of Entomology and Graduate Program in Neuroscience, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - David J. Schulz
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, Missouri, United States of America
| |
Collapse
|
6
|
Hepp Y, Tano MC, Pedreira ME, Freudenthal RA. NMDA-like receptors in the nervous system of the crabNeohelice granulata: A neuroanatomical description. J Comp Neurol 2013; 521:2279-97. [DOI: 10.1002/cne.23285] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 11/30/2012] [Accepted: 12/11/2012] [Indexed: 11/06/2022]
|
7
|
NMDA receptor expression and C terminus structure in the rotifer Brachionus plicatilis and long-term potentiation across the Metazoa. INVERTEBRATE NEUROSCIENCE 2013; 13:125-34. [DOI: 10.1007/s10158-013-0154-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 03/12/2013] [Indexed: 11/25/2022]
|
8
|
Ramoino P, Candiani S, Pittaluga AM, Usai C, Gallus L, Ferrando S, Milanese M, Faimali M, Bonanno G. Pharmacological characterization of N-methyl-d-aspartic acid (NMDA)-like receptors in the single-celled organism Paramecium primaurelia. J Exp Biol 2013; 217:463-71. [DOI: 10.1242/jeb.093914] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Summary
Paramecium primaurelia is a unicellular eukaryote that moves in freshwater by ciliary beating and responds to environmental stimuli by altering motile behaviour. The movements of the cilia are controlled by the electrical changes of the cell membrane: when the intraciliary Ca2+ concentration associated with plasma membrane depolarization increases, the ciliary beating reverses its direction, and consequently the swimming direction changes. The ciliary reversal duration is correlated with the amount of Ca2+ influx. Here we evaluated the effects due to the activation or blockade of NMDA receptors on swimming behaviour in Paramecium. Paramecia normally swim forward drawing almost linear tracks. We observed that the simultaneous administration of NMDA and glycine induced a partial ciliary reversal (PaCR) leading to a continuous spiral-like swim. Furthermore, the duration of continuous ciliary reversal (CCR), triggered by high external KCl concentrations, was longer in NMDA/glycine treated cells. NMDA action required the presence of Ca2+, as the normal forward swimming was restored when the ion was omitted from the extracellular milieu. The PaCR and the enhancement of CCR duration significantly decreased when the antagonists of the glutamate site D-AP5 or CGS19755, the NMDA channel blocker MK-801, or the glycine site antagonist DCKA were added. The action of NMDA/glycine was also abolished by Zn2+ or ifenprodil, the GluN2A and the GluN2B NMDA-containing subunit blockers, respectively. Searches of the Paramecium genome database currently available indicate that the NMDA-like receptor with ligand binding characteristics of an NMDA receptor-like complex, purified from rat brain synaptic membranes and found in some metazoan genome, is also present in Paramecium. These results provide evidence that functional NMDA receptors similar to those typical of mammalian neuronal cells are present in the single-celled organism Paramecium and thus suggest that the glutamatergic NMDA system is a phylogenetically old behaviour-controlling mechanism.
Collapse
|
9
|
Grey KB, Burrell BD. Seasonal variation of long-term potentiation at a central synapse in the medicinal leech. ACTA ACUST UNITED AC 2011; 214:2534-9. [PMID: 21753047 DOI: 10.1242/jeb.057224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Long-term potentiation (LTP) is a persistent increase in synaptic transmission that is thought to contribute to a variety of adaptive processes including learning and memory. Although learning is known to undergo circannual variations, it is not known whether LTP undergoes similar changes despite the importance of LTP in learning and memory. Here we report that synapses in the CNS of the medicinal leech demonstrate seasonal variation in the capacity to undergo LTP following paired presynaptic and postsynaptic stimulation. LTP was observed during the April-October period, but no LTP was observed during the November-March period. Application of forskolin, a technique often used to produce chemical LTP, failed to elicit potentiation during the November-March period. Implementing stimulation patterns that normally result in long term depression (LTD) also failed to elicit any change in synaptic strength during the November-March period. These experiments indicate that LTP and LTD can be influenced by circannual rhythms and also suggest a seasonal influence on learning and memory.
Collapse
Affiliation(s)
- Kathryn B Grey
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine at University of South Dakota, Vermillion, SD 57069, USA
| | | |
Collapse
|
10
|
Li Q, Burrell BD. Associative, bidirectional changes in neural signaling utilizing NMDA receptor- and endocannabinoid-dependent mechanisms. Learn Mem 2011; 18:545-53. [PMID: 21844187 DOI: 10.1101/lm.2252511] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Persistent, bidirectional changes in synaptic signaling (that is, potentiation and depression of the synapse) can be induced by the precise timing of individual pre- and postsynaptic action potentials. However, far less attention has been paid to the ability of paired trains of action potentials to elicit persistent potentiation or depression. We examined plasticity following the pairing of spike trains in the touch mechanosensory neuron (T cell) and S interneuron (S cell) in the medicinal leech. Long-term potentiation (LTP) of T to S signaling was elicited when the T-cell spike train preceded the S-cell train. An interval 0 to +1 sec between the T- and S-cell spike trains was required to elicit long-term potentiation (LTP), and this potentiation was NMDA receptor (NMDAR)-dependent. Long-term depression (LTD) was elicited when S-cell activity preceded T-cell activity and the interval between the two spike trains was -0.2 sec to -10 sec. This surprisingly broad temporal window involved two distinct cellular mechanisms; an NMDAR-mediated LTD (NMDAR-LTD) when the pairing interval was relatively brief (<-1 sec) and an endocannabinoid-mediated LTD (eCB-LTD) when longer pairing intervals were used (-1 to -10 sec). This eCB-LTD also required activation of a presynaptic transient receptor potential vanilloid (TRPV)-like receptor, presynaptic Ca(2+) release from intracellular stores and activation of voltage-gated Ca(2+) channels (VGCCs). These findings demonstrate that the pairing of spike trains elicits timing-dependent forms of LTP and LTD that are supported by a complex set of cellular mechanisms involving NMDARs and endocannabinoid activation of TRPV-like receptors.
Collapse
Affiliation(s)
- Qin Li
- Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| | | |
Collapse
|
11
|
Yuan S, Burrell BD. Endocannabinoid-dependent LTD in a nociceptive synapse requires activation of a presynaptic TRPV-like receptor. J Neurophysiol 2010; 104:2766-77. [PMID: 20884761 DOI: 10.1152/jn.00491.2010] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recent studies have found that some forms of endocannabinoid-dependent synaptic plasticity in the hippocampus are mediated through activation of transient potential receptor vanilloid (TRPV) receptors instead of cannabinoid receptors CB1 or CB2. The potential role for synaptic localization of TRPV receptors during endocannabinoid modulation of nociceptive synapses was examined in the leech CNS where it is possible to record from the same pair of neurons from one preparation to the next. Long-term depression (LTD) in the monosynaptic connection between the nociceptive (N) sensory neuron and the longitudinal (L) motor neuron was found to be endocannabinoid-dependent given that this depression was blocked by RHC-80267, an inhibitor of DAG lipase that is required for 2-arachidonoyl glycerol (2AG) synthesis. Intracellular injection of a second DAG lipase inhibitor, tetrahyrdolipstatin (THL) was also able to block this endocannabinoid-dependent LTD (ecLTD) when injected postsynaptically but not presynaptically. N-to-L ecLTD was also inhibited by the TRPV1 antagonists capsazepine and SB 366791. Bath application of 2AG or the TRPV1 agonists capsaicin and resiniferatoxin mimicked LTD and both capsaicin- and 2AG-induced depression were blocked by capsazepine. In addition, pretreatment with 2AG or capsaicin occluded subsequent expression of LTD induced by repetitive activity. Presynaptic, but not postsynaptic, intracellular injection of capsazepine blocked both activity- and 2AG-induced ecLTD, suggesting that a presynaptic TRPV-like receptor in the leech mediated this form of synaptic plasticity. These findings potentially extend the role ecLTD to nociceptive synapses and suggest that invertebrate synapses, which are thought to lack CB1/CB2 receptor orthologues, utilize a TRPV-like protein as an endocannabinoid receptor.
Collapse
Affiliation(s)
- Sharleen Yuan
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| | | |
Collapse
|
12
|
Grey KB, Burrell BD. Co-induction of LTP and LTD and its regulation by protein kinases and phosphatases. J Neurophysiol 2010; 103:2737-46. [PMID: 20457859 DOI: 10.1152/jn.01112.2009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The cellular properties of long-term potentiation (LTP) following pairing of pre- and postsynaptic activity were examined at a known glutamatergic synapse in the leech, specifically between the pressure (P) mechanosensory and anterior pagoda (AP) neurons. Stimulation of the presynaptic P cell (25 Hz) concurrent with a 2 nA depolarization of the postsynaptic AP cell significantly potentiated the P-to-AP excitatory postsynaptic potential (EPSP) in an N-methyl-d-aspartate receptor (NMDAR)-dependent manner based on inhibitory effects of the NMDAR antagonist MK801 and inhibition of the NMDAR glycine binding site by 7-chlorokynurenic acid. LTP was blocked by injection of bis-(o-aminophenoxy)-N,N,N',N'-tetraacetic acid (BAPTA) into the postsynaptic (AP) cell, indicating a requirement for postsynaptic elevation of intracellular Ca(2+). Autocamtide-2-related inhibitory peptide (AIP), a specific inhibitor of Ca(2+)/calmodulin-dependent kinase II (CaMKII), and Rp-cAMP, an inhibitor of protein kinase A (PKA), also blocked pairing-induced potentiation, indicating a requirement for activation of CaMKII and PKA. Interestingly, application of AIP during pairing resulted in significantly depressed synaptic transmission. Co-application of AIP with the protein phosphatase inhibitor okadaic acid restored synaptic transmission to baseline levels, suggesting an interaction between CaMKII and protein phosphatases during induction of activity-dependent synaptic plasticity. When postsynaptic activity preceded presynaptic activity, NMDAR-dependent long-term depression (LTD) was observed that was blocked by okadaic acid. Postsynaptic injection of botulinum toxin blocked P-to-AP potentiation while postsynaptic injection of pep2-SVKI, an inhibitor of AMPA receptor endocytosis, inhibited LTD, supporting the hypothesis that glutamate receptor trafficking contributes to both LTP and LTD at the P-to-AP synapse in the leech.
Collapse
Affiliation(s)
- Kathryn B Grey
- Division of Basic Biomedical Science, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| | | |
Collapse
|
13
|
Li Q, Burrell BD. Two forms of long-term depression in a polysynaptic pathway in the leech CNS: one NMDA receptor-dependent and the other cannabinoid-dependent. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2009; 195:831-41. [PMID: 19657662 DOI: 10.1007/s00359-009-0462-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Revised: 07/13/2009] [Accepted: 07/13/2009] [Indexed: 11/25/2022]
Abstract
Although long-term depression (LTD) is a well-studied form of synaptic plasticity, it is clear that multiple cellular mechanisms are involved in its induction. In the leech, LTD is observed in a polysynaptic connection between touch mechanosensory neurons (T cells) and the S interneuron following low frequency stimulation. LTD elicited by 450 s low frequency stimulation was blocked by N-methyl-D-aspartic acid (NMDA) receptor antagonists. However, LTD elicited by 900 s low frequency stimulation was insensitive to NMDA receptor antagonists and was instead dependent on cannabinoid signaling. This LTD was blocked by both a cannabinoid receptor antagonist and by inhibition of diacylglycerol lipase, which is necessary for the synthesis of the cannabinoid transmitter 2-arachidonyl glycerol (2-AG). Bath application of 2-AG or the cannabinoid receptor agonist CP55 940 also induced LTD at this synapse. These results indicate that two forms of LTD coexist at the leech T-to-S polysynaptic pathway: one that is NMDA receptor-dependent and another that is cannabinoid-dependent and that activation of either form of LTD is dependent on the level of activity in this circuit.
Collapse
Affiliation(s)
- Qin Li
- Division of Basic Biomedical Sciences, Sanford School of Medicine at the University of South Dakota, Vermillion, SD 57069, USA
| | | |
Collapse
|