1
|
Kersbergen CJ, Bergles DE. Priming central sound processing circuits through induction of spontaneous activity in the cochlea before hearing onset. Trends Neurosci 2024; 47:522-537. [PMID: 38782701 PMCID: PMC11236524 DOI: 10.1016/j.tins.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/02/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024]
Abstract
Sensory systems experience a period of intrinsically generated neural activity before maturation is complete and sensory transduction occurs. Here we review evidence describing the mechanisms and functions of this 'spontaneous' activity in the auditory system. Both ex vivo and in vivo studies indicate that this correlated activity is initiated by non-sensory supporting cells within the developing cochlea, which induce depolarization and burst firing of groups of nearby hair cells in the sensory epithelium, activity that is conveyed to auditory neurons that will later process similar sound features. This stereotyped neural burst firing promotes cellular maturation, synaptic refinement, acoustic sensitivity, and establishment of sound-responsive domains in the brain. While sensitive to perturbation, the developing auditory system exhibits remarkable homeostatic mechanisms to preserve periodic burst firing in deaf mice. Preservation of this early spontaneous activity in the context of deafness may enhance the efficacy of later interventions to restore hearing.
Collapse
Affiliation(s)
- Calvin J Kersbergen
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
| | - Dwight E Bergles
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA; Department of Otolaryngology - Head and Neck Surgery, Johns Hopkins University, Baltimore, MD, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
2
|
Levic S. SK Current, Expressed During the Development and Regeneration of Chick Hair Cells, Contributes to the Patterning of Spontaneous Action Potentials. Front Cell Neurosci 2022; 15:766264. [PMID: 35069114 PMCID: PMC8770932 DOI: 10.3389/fncel.2021.766264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 11/29/2021] [Indexed: 11/30/2022] Open
Abstract
Chick hair cells display calcium (Ca2+)-sensitive spontaneous action potentials during development and regeneration. The role of this activity is unclear but thought to be involved in establishing proper synaptic connections and tonotopic maps, both of which are instrumental to normal hearing. Using an electrophysiological approach, this work investigated the functional expression of Ca2+-sensitive potassium [IK(Ca)] currents and their role in spontaneous electrical activity in the developing and regenerating hair cells (HCs) in the chick basilar papilla. The main IK(Ca) in developing and regenerating chick HCs is an SK current, based on its sensitivity to apamin. Analysis of the functional expression of SK current showed that most dramatic changes occurred between E8 and E16. Specifically, there is a developmental downregulation of the SK current after E16. The SK current gating was very sensitive to the availability of intracellular Ca2+ but showed very little sensitivity to T-type voltage-gated Ca2+ channels, which are one of the hallmarks of developing and regenerating hair cells. Additionally, apamin reduced the frequency of spontaneous electrical activity in HCs, suggesting that SK current participates in patterning the spontaneous electrical activity of HCs.
Collapse
Affiliation(s)
- Snezana Levic
- Center for Neuroscience, University of California, Davis, Davis, CA, United States
- Sensory Neuroscience Research Group, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, United Kingdom
- Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
3
|
Eckrich S, Hecker D, Sorg K, Blum K, Fischer K, Münkner S, Wenzel G, Schick B, Engel J. Cochlea-Specific Deletion of Ca v1.3 Calcium Channels Arrests Inner Hair Cell Differentiation and Unravels Pitfalls of Conditional Mouse Models. Front Cell Neurosci 2019; 13:225. [PMID: 31178698 PMCID: PMC6538774 DOI: 10.3389/fncel.2019.00225] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 05/03/2019] [Indexed: 12/29/2022] Open
Abstract
Inner hair cell (IHC) Cav1.3 Ca2+ channels are multifunctional channels mediating Ca2+ influx for exocytosis at ribbon synapses, the generation of Ca2+ action potentials in pre-hearing IHCs and gene expression. IHCs of deaf systemic Cav1.3-deficient (Cav1.3-/-) mice stay immature because they fail to up-regulate voltage- and Ca2+-activated K+ (BK) channels but persistently express small conductance Ca2+-activated K+ (SK2) channels. In pre-hearing wildtype mice, cholinergic neurons from the superior olivary complex (SOC) exert efferent inhibition onto spontaneously active immature IHCs by activating their SK2 channels. Because Cav1.3 plays an important role for survival, health and function of SOC neurons, SK2 channel persistence and lack of BK channels in systemic Cav1.3-/- IHCs may result from malfunctioning neurons of the SOC. Here we analyze cochlea-specific Cav1.3 knockout mice with green fluorescent protein (GFP) switch reporter function, Pax2::cre;Cacna1d-eGFPflex/flexand Pax2::cre;Cacna1d-eGFPflex/-. Profound hearing loss, lack of BK channels and persistence of SK2 channels in Pax2::cre;Cacna1d-eGFPflex/- mice recapitulated the phenotype of systemic Cav1.3-/- mice, indicating that in wildtype mice, regulation of SK2 and BK channel expression is independent of Cav1.3 expression in SOC neurons. In addition, we noticed dose-dependent GFP toxicity leading to death of basal coil IHCs of Pax2::cre;Cacna1d-eGFPflex/flex mice, likely because of high GFP concentration and small repair capacity. This and the slower time course of Pax2-driven Cre recombinase in switching two rather than one Cacna1d-eGFPflex allele lead us to study Pax2::cre;Cacna1d-eGFPflex/- mice. Notably, control Cacna1d-eGFPflex/- IHCs showed a significant reduction in Cav1.3 channel cluster sizes and currents, suggesting that the intronic construct interfered with gene translation or splicing. These pitfalls are likely to be a frequent problem of many genetically modified mice with complex or multiple gene-targeting constructs or fluorescent proteins. Great caution and appropriate controls are therefore required.
Collapse
Affiliation(s)
- Stephanie Eckrich
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Homburg, Germany
| | - Dietmar Hecker
- Department of Otorhinolaryngology, Saarland University, Homburg, Germany
| | - Katharina Sorg
- Department of Otorhinolaryngology, Saarland University, Homburg, Germany
| | - Kerstin Blum
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Homburg, Germany
| | - Kerstin Fischer
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Homburg, Germany
| | - Stefan Münkner
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Homburg, Germany
| | - Gentiana Wenzel
- Department of Otorhinolaryngology, Saarland University, Homburg, Germany
| | - Bernhard Schick
- Department of Otorhinolaryngology, Saarland University, Homburg, Germany
| | - Jutta Engel
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Homburg, Germany
| |
Collapse
|
4
|
Frank MM, Goodrich LV. Talking back: Development of the olivocochlear efferent system. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2018; 7:e324. [PMID: 29944783 PMCID: PMC6185769 DOI: 10.1002/wdev.324] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 04/27/2018] [Accepted: 05/17/2018] [Indexed: 02/02/2023]
Abstract
Developing sensory systems must coordinate the growth of neural circuitry spanning from receptors in the peripheral nervous system (PNS) to multilayered networks within the central nervous system (CNS). This breadth presents particular challenges, as nascent processes must navigate across the CNS-PNS boundary and coalesce into a tightly intermingled wiring pattern, thereby enabling reliable integration from the PNS to the CNS and back. In the auditory system, feedforward spiral ganglion neurons (SGNs) from the periphery collect sound information via tonotopically organized connections in the cochlea and transmit this information to the brainstem for processing via the VIII cranial nerve. In turn, feedback olivocochlear neurons (OCNs) housed in the auditory brainstem send projections into the periphery, also through the VIII nerve. OCNs are motor neuron-like efferent cells that influence auditory processing within the cochlea and protect against noise damage in adult animals. These aligned feedforward and feedback systems develop in parallel, with SGN central axons reaching the developing auditory brainstem around the same time that the OCN axons extend out toward the developing inner ear. Recent findings have begun to unravel the genetic and molecular mechanisms that guide OCN development, from their origins in a generic pool of motor neuron precursors to their specialized roles as modulators of cochlear activity. One recurrent theme is the importance of efferent-afferent interactions, as afferent SGNs guide OCNs to their final locations within the sensory epithelium, and efferent OCNs shape the activity of the developing auditory system. This article is categorized under: Nervous System Development > Vertebrates: Regional Development.
Collapse
|
5
|
Mohammadi SA, Burton TJ, Christie MJ. α9-nAChR knockout mice exhibit dysregulation of stress responses, affect and reward-related behaviour. Behav Brain Res 2017; 328:105-114. [PMID: 28408300 DOI: 10.1016/j.bbr.2017.04.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/30/2017] [Accepted: 04/01/2017] [Indexed: 10/19/2022]
Abstract
The α9α10-subtype of nicotinic acetylcholine receptor (nAChR) has recently garnered interest in biomedicine and is being pursued as an analgesic target. However, the receptor exhibits diverse tissue distribution, the function of which is known to varying degrees, and targeting this receptor for clinical treatments without a broad understanding of its function may have adverse consequences. The α9α10-nAChR is expressed in the adrenal and pituitary glands, suggesting a potential role in the stress response, but little is known about its function in this tissue. Here we determined a role for the α9α10-nAChR in behavioural and physiological stress responses, by comparing the stress- and affect-related phenotypes of wildtype and α9-nAChR knockout mice. Naïve knockout mice exhibited largely normal behaviour on standard tests of affective behaviour. However, after sub-chronic restraint stress knockout mice showed significantly decreased stress-induced arousal and increased anxiety-like behaviour when compared to wildtype animals. Physiologically, corticosterone responses were muted in knockout mice after an acute stressor, but exaggerated in response to the same stressor after undergoing sub-chronic stress. Behavioural profiling of the α9-nAChR knockout mice in the home-cage revealed that circadian patterns of activity were altered when compared to wildtype controls. Furthermore, knockout mice showed altered responses to a period of reward discounting, resulting in anhedonia-like behaviour in a sucrose preference test where WT mice continued to seek reward. These experiments uncover a novel role for the α9α10-nAChR in mounting a normal stress response and in the regulation of affective- and reward-related behaviour, and suggest that pursuing the receptor for clinical treatments may not be as straightforward as has been suggested.
Collapse
Affiliation(s)
- Sarasa A Mohammadi
- Discipline of Pharmacology, The University of Sydney, Sydney, NSW 2006, Australia.
| | - Thomas J Burton
- Animal Behavioural Facility, Bosch Institute, The University of Sydney, Sydney, NSW 2006, Australia.
| | - MacDonald J Christie
- Discipline of Pharmacology, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
6
|
Kennedy HJ. New developments in understanding the mechanisms and function of spontaneous electrical activity in the developing mammalian auditory system. J Assoc Res Otolaryngol 2012; 13:437-45. [PMID: 22526733 DOI: 10.1007/s10162-012-0325-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 03/25/2012] [Indexed: 01/12/2023] Open
Abstract
In the mature mammalian auditory system, inner hair cells are responsible for converting sound-evoked vibrations into graded electrical responses, resulting in release of neurotransmitter and neuronal transmission via the VIIIth cranial nerve to auditory centres in the central nervous system. Before the cochlea can reliably respond to sound, inner hair cells are not merely immature quiescent pre-hearing cells, but instead are capable of generating 'spontaneous' calcium-based action potentials. The resulting calcium signal promotes transmitter release that drives action potential firing in developing spiral ganglion neurones. These early signalling events that occur before sound-evoked activity are thought to be important in guiding and refining the initial phases of development of the auditory circuits. This review will summarise our current knowledge of the mechanisms that underlie spontaneous action potentials in developing inner hair cells and how these events are triggered and regulated.
Collapse
Affiliation(s)
- Helen J Kennedy
- School of Physiology and Pharmacology, University of Bristol, Medical Sciences Building, University Walk, Bristol, BS8 1TD, UK.
| |
Collapse
|
7
|
Lauer AM, Fuchs PA, Ryugo DK, Francis HW. Efferent synapses return to inner hair cells in the aging cochlea. Neurobiol Aging 2012; 33:2892-902. [PMID: 22405044 DOI: 10.1016/j.neurobiolaging.2012.02.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 02/09/2012] [Accepted: 02/10/2012] [Indexed: 01/04/2023]
Abstract
Efferent innervation of the cochlea undergoes extensive modification early in development, but it is unclear if efferent synapses are modified by age, hearing loss, or both. Structural alterations in the cochlea affecting information transfer from the auditory periphery to the brain may contribute to age-related hearing deficits. We investigated changes to efferent innervation in the vicinity of inner hair cells (IHCs) in young and old C57BL/6 mice using transmission electron microscopy to reveal increased efferent innervation of IHCs in older animals. Efferent contacts on IHCs contained focal presynaptic accumulations of small vesicles. Synaptic vesicle size and shape were heterogeneous. Postsynaptic cisterns were occasionally observed. Increased IHC efferent innervation was associated with a smaller number of afferent synapses per IHC, increased outer hair cell loss, and elevated auditory brainstem response thresholds. Efferent axons also formed synapses on afferent dendrites but with a reduced prevalence in older animals. Age-related reduction of afferent activity may engage signaling pathways that support the return to an immature state of efferent innervation of the cochlea.
Collapse
Affiliation(s)
- Amanda M Lauer
- The Center for Hearing and Balance, Department of Otolaryngology-HNS, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | | | | | |
Collapse
|
8
|
Simmons DD, Morley BJ. Spatial and temporal expression patterns of nicotinic acetylcholine α9 and α10 subunits in the embryonic and early postnatal inner ear. Neuroscience 2011; 194:326-36. [PMID: 21843604 PMCID: PMC3204216 DOI: 10.1016/j.neuroscience.2011.08.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 07/23/2011] [Accepted: 08/01/2011] [Indexed: 11/24/2022]
Abstract
The expression and function of nicotinic receptor subunits (nAChRs) in the inner ear before the onset of hearing is not well understood. We investigated the mRNA expression of the α9 and α10 nAChR subunits in sensory hair cells of the embryonic and postnatal rat inner ear. We mapped their spatial and temporal expression in cochlear and vestibular hair cells using qPCR, [35S] labeled cRNA in situ hybridization, and α-bungarotoxin (α-Bgt) to label the presumptive membrane-bound receptor on cochlear hair cells. The results suggest that (1) the mRNA expression of the α9 subunit precedes expression of the α10 subunit in both cochlear and vestibular hair cells, (2) the mRNA expression of both the α9 and α10 subunits occurs earlier in the vestibular system than in the cochlea, (3) the mRNA expression of both subunits is required for the assembled receptor complexes, and (4) the presumptive assembled receptor, at least in the cochlea, is associated with synapse formation and the onset of function.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Ear, Inner/embryology
- Ear, Inner/growth & development
- Ear, Inner/physiology
- Female
- Gene Expression Regulation, Developmental/genetics
- Hair Cells, Auditory/metabolism
- Hair Cells, Vestibular/metabolism
- Pregnancy
- Protein Subunits/biosynthesis
- Protein Subunits/genetics
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Rats
- Rats, Sprague-Dawley
- Reaction Time/genetics
- Receptors, Nicotinic/biosynthesis
- Receptors, Nicotinic/genetics
Collapse
Affiliation(s)
- D D Simmons
- Department of Integrative Biology and Physiology and the Brain Research Institute, University of California, Los Angeles, CA 90095-7239, USA.
| | | |
Collapse
|
9
|
Wersinger E, Fuchs PA. Modulation of hair cell efferents. Hear Res 2010; 279:1-12. [PMID: 21187136 DOI: 10.1016/j.heares.2010.12.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 12/10/2010] [Accepted: 12/20/2010] [Indexed: 02/01/2023]
Abstract
Outer hair cells (OHCs) amplify the sound-evoked motion of the basilar membrane to enhance acoustic sensitivity and frequency selectivity. Medial olivocochlear (MOC) efferents inhibit OHCs to reduce the sound-evoked response of cochlear afferent neurons. OHC inhibition occurs through the activation of postsynaptic α9α10 nicotinic receptors tightly coupled to calcium-dependent SK2 channels that hyperpolarize the hair cell. MOC neurons are cholinergic but a number of other neurotransmitters and neuromodulators have been proposed to participate in efferent transmission, with emerging evidence for both pre- and postsynaptic effects. Cochlear inhibition in vivo is maximized by repetitive activation of the efferents, reflecting facilitation and summation of transmitter release onto outer hair cells. This review summarizes recent studies on cellular and molecular mechanisms of cholinergic inhibition and the regulation of those molecular components, in particular the involvement of intracellular calcium. Facilitation at the efferent synapse is compared in a variety of animals, as well as other possible mechanisms of modulation of ACh release. These results suggest that short-term plasticity contributes to effective cholinergic inhibition of hair cells.
Collapse
Affiliation(s)
- Eric Wersinger
- The Center for Hearing and Balance, Department of Otolaryngology Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW This review covers topics relevant to olivocochlear-efferent anatomy and function for which there are new findings in papers from 2009 to early 2010. RECENT FINDINGS Work within the review period has increased our understanding of medial olivocochlear (MOC) mechanisms in outer hair cells, MOC-reflex tuning, MOC effects on distortion product otoacoustic emissions, the time course of MOC effects, MOC effects in psychophysical tests and on understanding speech, MOC effects in attention and learning, and lateral efferent function in binaural hearing. In addition, there are new insights into efferent molecular mechanisms and their effect on cochlear development. SUMMARY Techniques for measuring efferent effects using otoacoustic emissions are now well developed and have promise in clinical applications ranging from predicting which patients are susceptible to acoustic trauma to characterizing relationships between efferent activation and learning disabilities. To realize this promise, studies are needed in which these techniques are applied with high standards.
Collapse
Affiliation(s)
- John J Guinan
- Eaton Peabody Laboratories, Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA.
| |
Collapse
|
11
|
Hone AJ, Whiteaker P, Christensen S, Xiao Y, Meyer EL, McIntosh JM. A novel fluorescent alpha-conotoxin for the study of alpha7 nicotinic acetylcholine receptors. J Neurochem 2009; 111:80-9. [PMID: 19650873 DOI: 10.1111/j.1471-4159.2009.06299.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Homomeric alpha7 nicotinic acetylcholine receptors are a well-established, pharmacologically distinct subtype. The more recently identified alpha9 subunit can also form functional homopentamers as well as alpha9alpha10 heteropentamers. Current fluorescent probes for alpha7 nicotinic ACh receptors are derived from alpha-bungarotoxin (alpha-BgTx). However, alpha-BgTx also binds to alpha9* and alpha1* receptors which are coexpressed with alpha7 in multiple tissues. We used an analog of alpha-conotoxin ArIB to develop a highly selective fluorescent probe for alpha7 receptors. This fluorescent alpha-conotoxin, Cy3-ArIB[V11L;V16A], blocked ACh-evoked alpha7 currents in Xenopus laevis oocytes with an IC(50) value of 2.0 nM. Observed rates of blockade were minute-scale with recovery from blockade even slower. Unlike FITC-conjugated alpha-BgTx, Cy3-ArIB[V11L;V16A] did not block alpha9alpha10 or alpha1beta1deltaepsilon receptors. In competition binding assays, Cy3-ArIB[V11L;V16A] potently displaced [(125)I]-alpha-BgTx binding to mouse hippocampal membranes with a K(i) value of 21 nM. Application of Cy3-ArIB[V11L;V16A] resulted in specific punctate labeling of KXalpha7R1 cells but not KXalpha3beta2R4, KXalpha3beta4R2, or KXalpha4beta2R2 cells. This labeling could be abolished by pre-treatment with alpha-cobratoxin. Thus, Cy3-ArIB[V11L;V16A] is a novel and selective fluorescent probe for alpha7 receptors.
Collapse
Affiliation(s)
- Arik J Hone
- Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, Utah, USA
| | | | | | | | | | | |
Collapse
|