1
|
Wohlbauer DM, Hem CB, McCallick C, Arenberg JG. Speech performance in adults with cochlear implants using combined channel deactivation and dynamic current focusing. Hear Res 2025; 463:109285. [PMID: 40347546 DOI: 10.1016/j.heares.2025.109285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 04/09/2025] [Accepted: 04/21/2025] [Indexed: 05/14/2025]
Abstract
OBJECTIVES AND METHODS Cochlear implant listeners show difficulties in understanding speech in noise. Channel interactions from activating overlapping neural populations reduce the signal accuracy necessary to interpret complex signals. Optimizing programming strategies based on focused detection thresholds to reduce channel interactions has led to improved performance. In the current study, two previously suggested methods, channel deactivation and focused dynamic tripolar stimulation, were combined. Utilizing an automatic channel selection algorithm from focused detection threshold profiles, three cochlear implant programs were created with the same deactivated channels but varying proportions of channels employing focused stimulation, monopolar, dynamic focused and a mixed program. Thirteen ears in eleven adult cochlear implant listeners with Advanced Bionics HiRes90k devices were tested. Vowel identification and sentence perception in quiet and noise served as outcome measures, and the influences of listening experience, age, clinical consonant-nucleus-consonant performance, and perceptual thresholds on speech performance were assessed. RESULTS Across subjects, different degrees of focusing showed individual performance improvements for vowels and sentences over the monopolar program. Focused listening benefits were shown for individuals with less cochlear implant experience, and clinically poor performers seem to benefit more from focusing than good performers. However, only slight trends and no significant group improvements were observed. CONCLUSION The current findings suggest that deactivating and focusing subsets of channels might improve speech performance for some individuals, especially poor performers, a possible effect of reduced channel interactions. The findings also show that performance is largely variable among individuals.
Collapse
Affiliation(s)
- Dietmar M Wohlbauer
- Harvard Medical School, Department of Otolaryngology, Head and Neck Surgery, Boston, 02114, MA, USA; Massachusetts Eye and Ear, Department for Audiology, Boston, 02114, MA, USA.
| | - Charles B Hem
- Massachusetts Eye and Ear, Department for Audiology, Boston, 02114, MA, USA; Harvard University, Cambridge, 02114, MA, USA
| | - Caylin McCallick
- Massachusetts Eye and Ear, Department for Audiology, Boston, 02114, MA, USA
| | - Julie G Arenberg
- Harvard Medical School, Department of Otolaryngology, Head and Neck Surgery, Boston, 02114, MA, USA; Massachusetts Eye and Ear, Department for Audiology, Boston, 02114, MA, USA
| |
Collapse
|
2
|
Wohlbauer DM, Dillier N. A Hundred Ways to Encode Sound Signals for Cochlear Implants. Annu Rev Biomed Eng 2025; 27:335-369. [PMID: 40310887 DOI: 10.1146/annurev-bioeng-102623-121249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Cochlear implants are the most successful neural prostheses used to restore hearing in severe-to-profound hearing-impaired individuals. The field of cochlear implant coding investigates interdisciplinary approaches to translate acoustic signals into electrical pulses transmitted at the electrode-neuron interface, ranging from signal preprocessing algorithms, enhancement, and feature extraction methodologies to electric signal generation. In the last five decades, numerous coding strategies have been proposed clinically and experimentally. Initially developed to restore speech perception, increasing computational possibilities now allow coding of more complex signals, and new techniques to optimize the transmission of electrical signals are constantly gaining attention. This review provides insights into the history of multichannel coding and presents an extensive list of implemented strategies. The article briefly addresses each method and considers promising future directions of neural prostheses and possible signal processing, with the ultimate goal of providing a current big picture of the large field of cochlear implant coding.
Collapse
Affiliation(s)
- Dietmar M Wohlbauer
- Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA;
| | - Norbert Dillier
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Zürich, University of Zürich, Zürich, Switzerland
| |
Collapse
|
3
|
Brown NS, Venkatesh S, Kavoosi TA, Onyeukwu JO, Brant JA, Quimby AE. Speech Outcomes of Cochlear Implantation, from 1983 to Present: A Systematic Review. Otol Neurotol 2025; 46:393-404. [PMID: 40077839 DOI: 10.1097/mao.0000000000004468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
OBJECTIVE We sought to assess whether the totality of advancements seen in cochlear implant (CI) design and implementation have translated to significant improvements in speech perception scores. DATABASES REVIEWED EMBASE, PubMed/MEDLINE, and the Cochrane Central Register of Controlled Trials. METHODS A systematic review of all English-language studies in peer-reviewed journals from 1946 to August 2022 was performed based on the Cochrane Handbook and the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Eligible studies were of adult patients who underwent cochlear implantation with Cochlear®, Med-EL, or Advanced Bionics devices with 12 months postoperative sentence recognition testing results. Meta-regression was performed to assess the relationship between speech recognition score and year of implantation. Preimplantation score and unilateral versus bilateral implantation were adjusted for. Subgroup analysis was performed by restricting to studies of <5 years duration and in which outcomes were measured ≤12 months postoperatively to reduce the likelihood of patients with remotely implanted devices having undergone upgrades to more contemporary coding software. RESULTS A total of 37 studies met criteria for inclusion, representing CIs implanted between 1983 and 2019. No significant association was identified between median study year and scores on 12-month postoperative sentence recognition testing on any of AzBio in quiet, CNC words, or HINT sentences in quiet. Subgroup analysis showed no difference in outcomes across 15 studies including patients implanted from 2007 to 2019. CONCLUSION In the absence of improved CI coding strategies since 2007, speech recognition outcomes in quiet have also not improved significantly since this time.
Collapse
Affiliation(s)
- Nia S Brown
- Norton College of Medicine, SUNY Upstate Medical University, Syracuse, New York
| | - Sanjena Venkatesh
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Tazheh A Kavoosi
- Department of Otolaryngology and Communication Sciences, SUNY Upstate Medical University, Syracuse, New York
| | - James O Onyeukwu
- Tufts University School of Medicine, Tufts University, Boston, Massachusetts
| | | | - Alexandra E Quimby
- Department of Otolaryngology and Communication Sciences, SUNY Upstate Medical University, Syracuse, New York
| |
Collapse
|
4
|
Wohlbauer DM, Hem C, McCallick C, Arenberg JG. Speech in noise performance in adults with cochlear implants using a combined channel deactivation strategy with a variable number of dynamic focused channels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.31.621419. [PMID: 39554103 PMCID: PMC11565966 DOI: 10.1101/2024.10.31.621419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
OBJECTIVES AND METHODS Cochlear implant listeners show difficulties in understanding speech in noise. Channel interactions from activating overlapping neural populations reduce the signal accuracy necessary to interpret complex signals. Optimizing programming strategies based on focused detection thresholds to reduce channel interactions has led to improved performance. In the current study, two previously suggested methods, channel deactivation and focused dynamic tripolar stimulation, were combined to create three cochlear implant programs. Utilizing an automatic channel selection algorithm from focused detection threshold profiles, three programs were created with the same deactivated channels but varying proportions of channels employing focused stimulation, monopolar, dynamic focused and a mixed program. Thirteen ears in eleven adult cochlear implant listeners with Advanced Bionics HiRes90k devices were tested. Vowel identification and sentence perception in quiet and noise served as outcome measures, and the influences of listening experience, age, clinical consonant-nucleus-consonant performance, and perceptual thresholds on speech performance were assessed. RESULTS Across subjects, different degrees of focusing showed individual performance improvements for vowels and sentences over the monopolar program. However, only slight trends and no significant group improvements were observed. Focused listening benefits were shown for individuals with less cochlear implant experience, and clinically poor performers seem to benefit more from focusing than good performers. CONCLUSION The current findings suggest that deactivating and focusing subsets of channels improves speech performance for some individuals, especially poor performers, a possible effect of reduced channel interactions. The findings also show that individual performance is largely variable, possibly due to listening experience, age, or the underlying detection threshold.
Collapse
|
5
|
Stahl P, Dang K, Vandersteen C, Guevara N, Clerc M, Gnansia D. Current distribution of distributed all-polar cochlear implant stimulation mode measured in-situ. PLoS One 2022; 17:e0275961. [PMID: 36315506 PMCID: PMC9621453 DOI: 10.1371/journal.pone.0275961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/27/2022] [Indexed: 11/06/2022] Open
Abstract
Oticon Medical cochlear implants use a stimulation mode called Distributed All-Polar (DAP) that connects all non-stimulating available intracochlear electrodes and an extracochlear reference electrode. It results in a complex distribution of current that is yet undescribed. The present study aims at providing a first characterization of this current distribution. A Neuro Zti was modified to allow the measurement of current returning to each electrode during a DAP stimulation and was implanted in an ex-vivo human head. Maps of distributed current were then created for different stimulation conditions with different charge levels. Results show that, on average, about 20% of current returns to the extracochlear reference electrode, while the remaining 80% is distributed between intracochlear electrodes. The position of the stimulating electrode changed this ratio, and about 10% more current to the extracochlear return in case of the first 3 basal electrodes than for apical and mid position electrodes was observed. Increasing the charge level led to small but significant change in the ratio, and about 4% more current to the extracochlear return was measured when increasing the charge level from 11.7 to 70 nC. Further research is needed to show if DAP yields better speech understanding than other stimulation modes.
Collapse
Affiliation(s)
- Pierre Stahl
- Department of Research and Technology, Oticon Medical, Vallauris, France
- * E-mail:
| | - Kai Dang
- Department of Research and Technology, Oticon Medical, Vallauris, France
- Athena Project Team, INRIA, Université Côte d’Azur, Nice, France
| | - Clair Vandersteen
- Head and Neck Surgery Institute, Nice University Hospital, Nice Cedex, France
| | - Nicolas Guevara
- Head and Neck Surgery Institute, Nice University Hospital, Nice Cedex, France
| | - Maureen Clerc
- Athena Project Team, INRIA, Université Côte d’Azur, Nice, France
| | - Dan Gnansia
- Department of Research and Technology, Oticon Medical, Vallauris, France
| |
Collapse
|
6
|
Roux J, Hanekom JJ. Effect of stimulation parameters on sequential current-steered stimuli in cochlear implants. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 152:609. [PMID: 35931549 DOI: 10.1121/10.0012763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Manipulation of cochlear implant (CI) place pitch was carried out with current steering by stimulating two CI electrodes sequentially. The objective was to investigate whether shifts in activated neural populations could be achieved to produce salient pitch differences and to determine which stimulation parameters would be more effective in steering of current. These were the pulse rate and pulse width of electrical stimuli and the distance between the two current-steering electrodes. Nine CI users participated, and ten ears were tested. The pattern of pitch changes was not consistent across listeners, but the data suggest that individualized selection of stimulation parameters may be used to effect place pitch changes with sequential current steering. Individual analyses showed that pulse width generally had little influence on the effectiveness of current steering with sequential stimuli, while more salient place pitch shifts were often achieved at wider electrode spacing or when the stimulation pulse rate was the same as that indicated on the clinical MAP (the set of stimulation parameters) of the listener. Results imply that current steering may be used in CIs that allow only sequential stimulation to achieve place pitch manipulation.
Collapse
Affiliation(s)
- Johanie Roux
- Bioengineering, Department of Electrical, Electronic, and Computer Engineering, University of Pretoria, University Road, Pretoria 0002, South Africa
| | - Johan J Hanekom
- Bioengineering, Department of Electrical, Electronic, and Computer Engineering, University of Pretoria, University Road, Pretoria 0002, South Africa
| |
Collapse
|
7
|
Jiang C, Singhal S, Landry T, Roberts I, de Rijk S, Brochier T, Goehring T, Tam Y, Carlyon R, Malliaras G, Bance M. An Instrumented Cochlea Model for the Evaluation of Cochlear Implant Electrical Stimulus Spread. IEEE Trans Biomed Eng 2021; 68:2281-2288. [PMID: 33587694 PMCID: PMC8215857 DOI: 10.1109/tbme.2021.3059302] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cochlear implants use electrical stimulation of the auditory nerve to restore the sensation of hearing to deaf people. Unfortunately, the stimulation current spreads extensively within the cochlea, resulting in “blurring” of the signal, and hearing that is far from normal. Current spread can be indirectly measured using the implant electrodes for both stimulating and sensing, but this provides incomplete information near the stimulating electrode due to electrode-electrolyte interface effects. Here, we present a 3D-printed “unwrapped” physical cochlea model with integrated sensing wires. We integrate resistors into the walls of the model to simulate current spread through the cochlear bony wall, and “tune” these resistances by calibration with an in-vivo electrical measurement from a cochlear implant patient. We then use this model to compare electrical current spread under different stimulation modes including monopolar, bipolar and tripolar configurations. Importantly, a trade-off is observed between stimulation amplitude and current focusing among different stimulation modes. By combining different stimulation modes and changing intracochlear current sinking configurations in the model, we explore this trade-off between stimulation amplitude and focusing further. These results will inform clinical strategies for use in delivering speech signals to cochlear implant patients.
Collapse
|
8
|
Luo X, Wu CC, Pulling K. Combining current focusing and steering in a cochlear implant processing strategy. Int J Audiol 2020; 60:232-237. [PMID: 32967485 DOI: 10.1080/14992027.2020.1822551] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OBJECTIVE To evaluate the benefit of combined current focusing and steering to speech recognition in noise with cochlear implants (CIs). DESIGN Combined current focusing and steering was implemented using focused partial tripolar (pTP) mode with two current steering ranges. The two pTPsteering strategies were compared to a monopolar (MP) strategy without current focusing or steering and a pTP strategy with only current focusing using the Hearing in Noise Test. The strategies differed only in stimulation mode. STUDY SAMPLE Ten post-lingually deafened adult CI users participated in this study. RESULTS Compared to the MP strategy, both pTPsteering strategies produced significantly better speech reception thresholds, while the pTP strategy did not. Subjects with better baseline MP performance had less improvements with the pTPsteering strategies. All four strategies were experimental low-rate strategies and none of them outperformed subjects' clinical strategies. CONCLUSIONS Speech recognition in noise was better with the pTPsteering strategies than with the MP strategy, but the effect of pTP-mode current steering on spectral resolution is yet to be tested.
Collapse
Affiliation(s)
- Xin Luo
- College of Health Solutions, Arizona State University, Tempe, AZ, USA
| | - Ching-Chih Wu
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA
| | - Kathryn Pulling
- College of Health Solutions, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
9
|
Luo X, Garrett C. Dynamic current steering with phantom electrode in cochlear implants. Hear Res 2020; 390:107949. [PMID: 32200300 DOI: 10.1016/j.heares.2020.107949] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/03/2020] [Accepted: 03/10/2020] [Indexed: 12/01/2022]
Abstract
Phantom electrode (PE) stimulation can extend the lower limit of pitch perception with cochlear implants (CIs) by using simultaneous out-of-phase stimulation of the most apical primary electrode and the adjacent basal compensating electrode. The total electrical field may push the excitation pattern beyond the most apical electrode to elicit a lower pitch, depending on the ratio of current between the compensating and primary electrodes (i.e., the compensation coefficient σ). This study tested the hypothesis that dynamic current steering of PE stimuli can be implemented by varying σ over time to encode spectral details in low frequencies. To determine the range of σ for current steering and the corresponding current levels, Experiment 1 tested CI users' loudness balance and pitch ranking of static PE stimuli with σ from 0 to 0.6 in steps of 0.2. It was found that the equal-loudness most comfortable level significantly increased with σ and can be modeled by a piecewise linear function of σ. Consistent with the previous findings, higher σ elicited either lower or similar pitches without salient pitch reversals than lower σ. Based on the results of Experiment 1, Experiment 2 created flat, rising, and falling pitch contours of 300-1000 ms using dynamic PE stimuli with time-varying σ from 0 to 0.6 and equal-loudness current levels. In a pitch contour identification (PCI) task, CI users scored 80% and above on average. Increasing the stimulus duration from 300 to 1000 ms slightly but did not significantly improve the PCI scores. Across subjects, the 1000-ms PCI scores in Experiment 2 were significantly correlated with the cumulative pitch-ranking sensitivity in Experiment 1. It is thus feasible to use dynamic current steering with PE to encode low-frequency pitch cues for CI users.
Collapse
Affiliation(s)
- Xin Luo
- Program of Speech and Hearing Science, College of Health Solutions, Arizona State University, 975 S. Myrtle Av., P.O. Box 870102, Tempe, AZ, 85287, USA.
| | - Christopher Garrett
- Program of Speech and Hearing Science, College of Health Solutions, Arizona State University, 975 S. Myrtle Av., P.O. Box 870102, Tempe, AZ, 85287, USA
| |
Collapse
|
10
|
Abstract
OBJECTIVES In an attempt to improve spectral resolution and speech intelligibility, several current focusing methods have been proposed to increase spatial selectivity by decreasing intracochlear current spread. For example, tripolar stimulation administers current to a central electrode and uses the two flanking electrodes as the return pathway, creating a narrower intracochlear electrical field and hence increases spectral resolution when compared with monopolar (MP) stimulation. However, more current is required, and in some patients, specifically the ones with high electrode impedances, full loudness growth cannot be supported because of compliance limits. The present study describes and analyses a new loudness encoding approach that uses tripolar stimulation near threshold and gradually broadens the excitation (by decreasing compensation coefficient σ) to increase loudness without the need to increase overall current. It is hypothesized that this dynamic current focusing (DCF) strategy increases spatial selectivity, especially at lower loudness levels, while maintaining maximum selectivity at higher loudness levels, without reaching compliance limits. DESIGN Eleven adult cochlear implant recipients with postlingual hearing loss, with at least 9 months of experience with their HiRes90K implant, were selected to participate in this study. Baseline performance regarding speech intelligibility in noise (Dutch matrix sentence test), spectral ripple discrimination at 45 and 65 dB, and temporal modulation detection thresholds were assessed using their own clinical program, fitted on a Harmony processor. Subsequently, the DCF strategy was fitted on a research Harmony processor. Threshold levels were determined with σ = 0.8, which means 80% of current is returned to the flanking electrodes and the remaining 20% to the extracochlear ground electrode. Instead of increasing overall pulse magnitude, σ was decreased to determine most comfortable loudness. After 2 to 3 hr of adaptation to the research strategy, the same psychophysical measures were taken. RESULTS At 45 dB, average spectral ripple scores improved significantly from 2.4 ripples per octave with their clinical program to 3.74 ripples per octave with the DCF strategy (p = 0.016). Eight out of 11 participants had an improved spectral resolution at 65 dB. Nevertheless, no significant difference between DCF and MP was observed at higher presentation levels. Both speech-in-noise and temporal modulation detection thresholds were equal for MP and DCF strategies. Subjectively, 2 participants preferred the DCF strategy over their own clinical program, 2 preferred their own strategy, while the majority of the participants had no preference. Battery life was decreased and ranged from 1.5 to 4 hr. CONCLUSIONS The DCF strategy gives better spectral resolution, at lower loudness levels, but equal performance on speech tests. These outcomes warrant for a longer adaptation period to study long-term outcomes and evaluate if the outcomes in the ripple tests transfer to the speech scores. Further research, for example, with respect to fitting rules and reduction of power consumption, is necessary to make the DCF strategy suitable for routine clinical application.
Collapse
|
11
|
Xu Y, Luo C, You Z. Optimization of cochlear implant stimulation resolution using an intracochlear electric potential model. Comput Biol Med 2018; 94:99-105. [PMID: 29408002 DOI: 10.1016/j.compbiomed.2017.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 12/06/2017] [Accepted: 12/20/2017] [Indexed: 10/18/2022]
Abstract
Designing an electrode array with a high stimulation resolution (SR) is the main challenge in cochlear implant development. In this work, a thin-film electrode array (TFEA) and partial tripolar (pTP) mode were combined in the design stage to optimize the SR. A finite-element model of the intracochlear electric potential Ve incorporating a TFEA and pTP mode was built and validated using previous experimental measurements. Based on this model, the SR was analyzed by using a defined stimulation factor Vs, which takes both the amplitude and bandwidth of Ve into account. A co-simulation method integrating the model and genetic algorithm was employed to maximize Vs with an optimized parameter set including the electrode diameter d, electrode interval g, and compensation coefficient σ. The results indicated that a TFEA combined with pTP mode outperforms their individual utilization to improve the SR and that d has an independent negative correlation with the SR, but it is more effective and feasible to consider all three parameters in the design stage with the proposed model and co-simulation optimization method. In our design, the optimized parameters were d = 150 μm, g = 200.5 μm, and σ = 0.746.
Collapse
Affiliation(s)
- Yuchen Xu
- State Key Laboratory of Precision Measurement Technology and Instrument, Tsinghua University, Beijing 100083, China; Department of Precision Instrument, Tsinghua University, Beijing 100083, China; Beijing Laboratory for Biomedical Detection Technology and Instrument, Tsinghua University, Beijing 100083, China
| | - Chuan Luo
- State Key Laboratory of Precision Measurement Technology and Instrument, Tsinghua University, Beijing 100083, China; Department of Precision Instrument, Tsinghua University, Beijing 100083, China; Beijing Laboratory for Biomedical Detection Technology and Instrument, Tsinghua University, Beijing 100083, China.
| | - Zheng You
- State Key Laboratory of Precision Measurement Technology and Instrument, Tsinghua University, Beijing 100083, China; Department of Precision Instrument, Tsinghua University, Beijing 100083, China; Beijing Laboratory for Biomedical Detection Technology and Instrument, Tsinghua University, Beijing 100083, China.
| |
Collapse
|
12
|
Perceptual changes with monopolar and phantom electrode stimulation. Hear Res 2017; 359:64-75. [PMID: 29325874 DOI: 10.1016/j.heares.2017.12.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 12/17/2017] [Accepted: 12/23/2017] [Indexed: 11/21/2022]
Abstract
Phantom electrode (PE) stimulation is achieved by simultaneously stimulating out-of-phase from two adjacent intra-cochlear electrodes with different amplitudes. If the basal electrode stimulates with a smaller amplitude than the apical electrode of the pair, the resulting electrical field is pushed away from the basal electrode producing a lower pitch. There is great interest in using PE stimulation in a processing strategy as it can be used to provide stimulation to regions of the cochlea located more apically than the most apical contact on the electrode array. The result is that even lower pitch sensations can be provided without additional risk of a deeper insertion. However, it is unknown if there are perceptual differences between monopolar (MP) and PE stimulation other than a shift in place pitch. Furthermore, it is unknown if the effect and magnitude of changing from MP to PE stimulation is dependent on electrode location. This study investigates the perceptual differences (including pitch and other sound quality differences) at multiple electrode positions using MP and PE stimulation using both a multidimensional scaling procedure (MDS) and a traditional scaling procedure. 10 Advanced Bionics users reported the perceptual distances between 5 single electrode (typically 1, 3, 5, 7, and 9) stimuli in either MP or PE (σ = 0.5) mode. Subjects were asked to report how perceptually different each pair of stimuli were using any perceived differences except loudness. Subsequently, each stimulus was presented in isolation and subjects scaled how "high" or how "clean" each sounded. Results from the MDS task suggest that perceptual differences between MP and PE stimulation can be explained by a single dimension. The traditional scaling suggests that the single dimension is place pitch. PE stimulation elicits lower pitch perceptions in all cochlear regions. Analysis of Cone Beam Computer Tomography (CBCT) data suggests that PE stimulation may be more effective at the apical part of the cochlea. PE stimulation can be used for new sound coding strategies in order to extend the pitch range for cochlear implant (CI) users without perceptual side effects.
Collapse
|
13
|
Padilla M, Stupak N, Landsberger DM. Pitch ranking with different virtual channel configurations in electrical hearing. Hear Res 2017; 348:54-62. [DOI: 10.1016/j.heares.2017.02.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 02/09/2017] [Accepted: 02/14/2017] [Indexed: 11/29/2022]
|
14
|
Nogueira W, Litvak LM, Landsberger DM, Büchner A. Loudness and pitch perception using Dynamically Compensated Virtual Channels. Hear Res 2016; 344:223-234. [PMID: 27939418 DOI: 10.1016/j.heares.2016.11.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 11/26/2016] [Accepted: 11/29/2016] [Indexed: 10/20/2022]
Abstract
Reducing power consumption is important for the development of smaller cochlear implant (CI) speech processors. Simultaneous electrode stimulation may improve power efficiency by minimizing the required current applied to a given electrode. Simultaneous in-phase stimulation on adjacent electrodes (i.e. virtual channels) can be used to elicit pitch percepts intermediate to the ones provided by each of the physical electrodes in isolation. Virtual channels are typically implemented in monopolar stimulation mode, producing broad excitation patterns. Focused stimulation may reduce the excitation patterns, but is inefficient in terms of power consumption. To create a more power efficient virtual channel, we developed the Dynamically Compensated Virtual Channel (DC-VC) using four adjacent electrodes. The two central electrodes are current steered using the coefficient α (0<α<1 ) whereas the two flanking electrodes are used to focus/unfocus the stimulation with the coefficient σ (-1<σ<1). With increasing values of σ, power can be saved at the potential expense of generating broader electric fields. Additionally, reshaping the electric fields might also alter place pitch coding. The goal of the present study is to investigate the tradeoff between place pitch encoding and power savings using simultaneous electrode stimulation in the DC-VC configuration. A computational model and psychophysical experiments in CI users have been used for that purpose. Results from 10 adult Advanced Bionics CI users have been collected. Results show that the required current to produce comfortable levels is significantly reduced with increasing σ as predicted by the computational model. Moreover, no significant differences in the estimated number of discriminable steps were detected for the different values of σ. From these results, we conclude that DC-VCs can reduce power consumption without decreasing the number of discriminable place pitch steps.
Collapse
Affiliation(s)
- Waldo Nogueira
- Medical University Hannover, Cluster of Excellence "Hearing4all", Hannover, Germany.
| | | | | | - Andreas Büchner
- Medical University Hannover, Cluster of Excellence "Hearing4all", Hannover, Germany
| |
Collapse
|
15
|
Luo X, Wu CC. Symmetric Electrode Spanning Narrows the Excitation Patterns of Partial Tripolar Stimuli in Cochlear Implants. J Assoc Res Otolaryngol 2016; 17:609-619. [PMID: 27562804 DOI: 10.1007/s10162-016-0582-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 08/10/2016] [Indexed: 11/30/2022] Open
Abstract
In cochlear implants (CIs), standard partial tripolar (pTP) mode reduces current spread by returning a fraction of the current to two adjacent flanking electrodes within the cochlea. Symmetric electrode spanning (i.e., separating both the apical and basal return electrodes from the main electrode by one electrode) has been shown to increase the pitch of pTP stimuli, when the ratio of intracochlear return current was fixed. To explain the pitch increase caused by symmetric spanning in pTP mode, this study measured the electrical potentials of both standard and symmetrically spanned pTP stimuli on a main electrode EL8 in five CI ears using electrical field imaging (EFI). In addition, the spatial profiles of evoked compound action potentials (ECAP) and the psychophysical forward masking (PFM) patterns were also measured for both stimuli. The EFI, ECAP, and PFM patterns of a given stimulus differed in shape details, reflecting the different levels of auditory processing and different ratios of intracochlear return current across the measurement methods. Compared to the standard pTP stimuli, the symmetrically spanned pTP stimuli significantly reduced the areas under the curves of the normalized EFI and PFM patterns, without shifting the pattern peaks and centroids (both around EL8). The more focused excitation patterns with symmetric spanning may have caused the previously reported pitch increase, due to an interaction between pitch and timbre perception. Being able to reduce the spread of excitation, pTP mode symmetric spanning is a promising stimulation strategy that may further increase spectral resolution and frequency selectivity with CIs.
Collapse
Affiliation(s)
- Xin Luo
- Department of Speech, Language, and Hearing Sciences, Purdue University, 715 Clinic Dr., West Lafayette, IN, 47907, USA. .,Department of Speech and Hearing Science, Arizona State University, Coor Hall, 975 S. Myrtle Av., P.O. Box 870102, Tempe, AZ, 85287, USA.
| | - Ching-Chih Wu
- Department of Speech, Language, and Hearing Sciences, Purdue University, 715 Clinic Dr., West Lafayette, IN, 47907, USA.,School of Electrical and Computer Engineering, Purdue University, 465 Northwestern Av., West Lafayette, IN, 47907, USA
| |
Collapse
|
16
|
Wu CC, Luo X. Excitation Patterns of Standard and Steered Partial Tripolar Stimuli in Cochlear Implants. J Assoc Res Otolaryngol 2015; 17:145-58. [PMID: 26691160 DOI: 10.1007/s10162-015-0549-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Accepted: 11/25/2015] [Indexed: 11/25/2022] Open
Abstract
Current steering in partial tripolar (pTP) mode has been shown to improve pitch perception and spectral resolution with cochlear implants (CIs). In this mode, a fraction (σ) of the main electrode current is returned within the cochlea and steered between the basal and apical flanking electrodes (with a proportion of α and 1 - α, respectively). Pitch generally decreases when α increases from 0 to 1, although the salience of pitch change varies across CI users. This study aimed to identify the mechanism of pitch changes with pTP-mode current steering and the factors contributing to the intersubject variability in pitch-ranking sensitivity. The electrical fields were measured for steered pTP stimuli on the same main electrode with α = 0, 0.5, and 1 in five implanted ears using electrical field imaging (EFI). The related excitation patterns were also measured physiologically using evoked compound action potential (ECAP) and psychophysically using psychophysical forward masking (PFM). Consistent with the pitch-ranking results in this study, the EFI, ECAP, and PFM centroids shifted apically with increasing α. An apical shift was also observed for the PFM peak but not for the EFI or ECAP peak. The pattern width was similar with different α values within a given measure (e.g., EFI, ECAP, or PFM), but the ECAP patterns were broader than the EFI and PFM patterns, possibly because ECAP was measured with smaller σ values than EFI and PFM. The amount of pattern shift with α depended on σ (i.e., the total amount of current used for steering) but was not correlated with the pitch-ranking sensitivity across subjects. The results revealed that the pitch changes elicited by pTP-mode current steering were not only driven by the shifts of excitation centroid.
Collapse
Affiliation(s)
- Ching-Chih Wu
- Department of Speech, Language, and Hearing Sciences, Purdue University, 715 Clinic Drive, West Lafayette, IN, 47907, USA
- School of Electrical and Computer Engineering, Purdue University, 715 Clinic Drive, West Lafayette, IN, 47907, USA
| | - Xin Luo
- Department of Speech, Language, and Hearing Sciences, Purdue University, 715 Clinic Drive, West Lafayette, IN, 47907, USA.
- Department of Speech and Hearing Science, Arizona State University, Coor Hall, 975 S. Myrtle Av., P. O. Box 870102, Tempe, AZ, 85287, USA.
| |
Collapse
|
17
|
Tan X, Young H, Matic AI, Zirkle W, Rajguru S, Richter CP. Temporal properties of inferior colliculus neurons to photonic stimulation in the cochlea. Physiol Rep 2015; 3:3/8/e12491. [PMID: 26311831 PMCID: PMC4562577 DOI: 10.14814/phy2.12491] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Infrared neural stimulation (INS) may be beneficial in auditory prostheses because of its spatially selective activation of spiral ganglion neurons. However, the response properties of single auditory neurons to INS and the possible contributions of its optoacoustic effects are yet to be examined. In this study, the temporal properties of auditory neurons in the central nucleus of the inferior colliculus (ICC) of guinea pigs in response to INS were characterized. Spatial selectivity of INS was observed along the tonotopically organized ICC. Trains of laser pulses and trains of acoustic clicks were used to evoke single unit responses in ICC of normal hearing animals. In response to INS, ICC neurons showed lower limiting rates, longer latencies, and lower firing efficiencies. In deaf animals, ICC neurons could still be stimulated by INS while unresponsive to acoustic stimulation. The site and spatial selectivity of INS both likely shaped the temporal properties of ICC neurons.
Collapse
Affiliation(s)
- Xiaodong Tan
- Department of Otolaryngology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Hunter Young
- Department of Otolaryngology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Agnella Izzo Matic
- Department of Otolaryngology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Whitney Zirkle
- Department of Otolaryngology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Suhrud Rajguru
- Department of Biomedical Engineering, University of Miami, Miami, Florida, USA Department of Otolaryngology, University of Miami, Miami, Florida, USA
| | - Claus-Peter Richter
- Department of Otolaryngology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, USA The Hugh Knowles Center, Department of Communication Sciences and Disorders, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
18
|
Francart T, Osses A, Wouters J. Speech perception with F0mod, a cochlear implant pitch coding strategy. Int J Audiol 2015; 54:424-32. [DOI: 10.3109/14992027.2014.989455] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
19
|
Kalkman RK, Briaire JJ, Frijns JHM. Current focussing in cochlear implants: an analysis of neural recruitment in a computational model. Hear Res 2014; 322:89-98. [PMID: 25528491 DOI: 10.1016/j.heares.2014.12.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Revised: 12/05/2014] [Accepted: 12/09/2014] [Indexed: 10/24/2022]
Abstract
Several multipolar current focussing strategies are examined in a computational model of the implanted human cochlea. The model includes a realistic spatial distribution of cell bodies of the auditory neurons throughout Rosenthal's canal. Simulations are performed of monopolar, (partial) tripolar and phased array stimulation. Excitation patterns, estimated thresholds, electrical dynamic range, excitation density and neural recruitment curves are determined and compared. The main findings are: (I) Current focussing requires electrical field interaction to induce spatially restricted excitation patterns. For perimodiolar electrodes the distance to the neurons is too small to have sufficient electrical field interaction, which results in neural excitation near non-centre contacts. (II) Current focussing only produces spatially restricted excitation patterns when there is little or no excitation occurring in the peripheral processes, either because of geometrical factors or due to neural degeneration. (III) The model predicts that neural recruitment with electrical stimulation is a three-dimensional process; regions of excitation not only expand in apical and basal directions, but also by penetrating deeper into the spiral ganglion. (IV) At equal loudness certain differences between the spatial excitation patterns of various multipoles cannot be simulated in a model containing linearly aligned neurons of identical morphology. Introducing a form of variability in the neurons, such as the spatial distribution of cell bodies in the spiral ganglion used in this study, is therefore essential in the modelling of spread of excitation. This article is part of a Special Issue entitled <Lasker Award>.
Collapse
Affiliation(s)
- Randy K Kalkman
- ENT-department, Leiden University Medical Centre, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Jeroen J Briaire
- ENT-department, Leiden University Medical Centre, PO Box 9600, 2300 RC Leiden, The Netherlands; Leiden Institute for Brain and Cognition, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Johan H M Frijns
- ENT-department, Leiden University Medical Centre, PO Box 9600, 2300 RC Leiden, The Netherlands; Leiden Institute for Brain and Cognition, PO Box 9600, 2300 RC Leiden, The Netherlands.
| |
Collapse
|
20
|
Wu CC, Luo X. Electrode spanning with partial tripolar stimulation mode in cochlear implants. J Assoc Res Otolaryngol 2014; 15:1023-36. [PMID: 24865767 DOI: 10.1007/s10162-014-0464-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 05/07/2014] [Indexed: 11/26/2022] Open
Abstract
The perceptual effects of electrode spanning (i.e., the use of nonadjacent return electrodes) in partial tripolar (pTP) mode were tested on a main electrode EL8 in five cochlear implant (CI) users. Current focusing was controlled by σ (the ratio of current returned within the cochlea), and current steering was controlled by α (the ratio of current returned to the basal electrode). Experiment 1 tested whether asymmetric spanning with α = 0.5 can create additional channels around standard pTP stimuli. It was found that in general, apical spanning (i.e., returning current to EL6 rather than EL7) elicited a pitch between those of standard pTP stimuli on main electrodes EL8 and EL9, while basal spanning (i.e., returning current to EL10 rather than EL9) elicited a pitch between those of standard pTP stimuli on main electrodes EL7 and EL8. The pitch increase caused by apical spanning was more salient than the pitch decrease caused by basal spanning. To replace the standard pTP channel on the main electrode EL8 when EL7 or EL9 is defective, experiment 2 tested asymmetrically spanned pTP stimuli with various α, and experiment 3 tested symmetrically spanned pTP stimuli with various σ. The results showed that pitch increased with decreasing α in asymmetric spanning, or with increasing σ in symmetric spanning. Apical spanning with α around 0.69 and basal spanning with α around 0.38 may both elicit a similar pitch as the standard pTP stimulus. With the same σ, the symmetrically spanned pTP stimulus was higher in pitch than the standard pTP stimulus. A smaller σ was thus required for symmetric spanning to match the pitch of the standard pTP stimulus. In summary, electrode spanning is an effective field-shaping technique that is useful for adding spectral channels and handling defective electrodes with CIs.
Collapse
Affiliation(s)
- Ching-Chih Wu
- School of Electrical and Computer Engineering, Purdue University, 500 Oval Drive, West Lafayette, IN, 47907, USA,
| | | |
Collapse
|
21
|
Lopez Valdes A, Mc Laughlin M, Viani L, Walshe P, Smith J, Zeng FG, Reilly RB. Objective assessment of spectral ripple discrimination in cochlear implant listeners using cortical evoked responses to an oddball paradigm. PLoS One 2014; 9:e90044. [PMID: 24599314 PMCID: PMC3943794 DOI: 10.1371/journal.pone.0090044] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 01/28/2014] [Indexed: 11/19/2022] Open
Abstract
Cochlear implants (CIs) can partially restore functional hearing in deaf individuals. However, multiple factors affect CI listener's speech perception, resulting in large performance differences. Non-speech based tests, such as spectral ripple discrimination, measure acoustic processing capabilities that are highly correlated with speech perception. Currently spectral ripple discrimination is measured using standard psychoacoustic methods, which require attentive listening and active response that can be difficult or even impossible in special patient populations. Here, a completely objective cortical evoked potential based method is developed and validated to assess spectral ripple discrimination in CI listeners. In 19 CI listeners, using an oddball paradigm, cortical evoked potential responses to standard and inverted spectrally rippled stimuli were measured. In the same subjects, psychoacoustic spectral ripple discrimination thresholds were also measured. A neural discrimination threshold was determined by systematically increasing the number of ripples per octave and determining the point at which there was no longer a significant difference between the evoked potential response to the standard and inverted stimuli. A correlation was found between the neural and the psychoacoustic discrimination thresholds (R2 = 0.60, p<0.01). This method can objectively assess CI spectral resolution performance, providing a potential tool for the evaluation and follow-up of CI listeners who have difficulty performing psychoacoustic tests, such as pediatric or new users.
Collapse
Affiliation(s)
| | - Myles Mc Laughlin
- Trinity Centre for Bioengineering, Trinity College, Dublin, Ireland
- Hearing and Speech Laboratory, University of California Irvine, Irvine, California, United States of America
| | - Laura Viani
- National Cochlear Implant Programme, Beaumont Hospital, Dublin, Ireland
| | - Peter Walshe
- National Cochlear Implant Programme, Beaumont Hospital, Dublin, Ireland
| | - Jaclyn Smith
- National Cochlear Implant Programme, Beaumont Hospital, Dublin, Ireland
| | - Fan-Gang Zeng
- Hearing and Speech Laboratory, University of California Irvine, Irvine, California, United States of America
| | | |
Collapse
|