1
|
Abstract
The hippocampal formation (HF) processes spatial memories for cache locations in food-hoarding birds. Hoarding is a seasonal behavior, and seasonal changes in the HF have been described in some studies, but not in others. One potential reason is that birds may have been sampled during the seasonal hoarding peak in some studies, but not in others. In this study, we investigate the seasonal changes in hoarding and HF in willow tits (Poecile montanus). We compare this to seasonal changes in HF in a closely related non-hoarding bird, the great tit (Parus major). Willow tits near Oulu, Finland, show a seasonal hoarding peak in September and both HF volume and neuron number show a similar peak. HF neuronal density also increases in September, but then remains the same throughout winter. Unexpectedly, the great tit HF also changes seasonally, although in a different pattern: the great tit telencephalon increases in volume from July to August and decreases again in November. Great tit HF volume follows suit, but with a delay. Great tit HF neuron number and density also increase from August to September and stay high throughout winter. We hypothesize that seasonal changes in hoarding birds’ HF are driven by food-hoarding experience (e.g., the formation of thousands of memories). The seasonal changes in great tit brains may also be due to experience-dependent plasticity, responding to changes in the social and spatial environment. Large-scale experience-dependent neural plasticity is therefore probably not an adaptation of food-hoarding birds, but a general property of the avian HF and telencephalon.
Collapse
|
2
|
Effects of site fidelity, group size and age on food-caching behaviour of common ravens, Corvus corax. Anim Behav 2020. [DOI: 10.1016/j.anbehav.2020.03.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
3
|
|
4
|
Šálek M, Zámečník V. Delayed nest predation: a possible tactic toward nests of open-nesting birds. FOLIA ZOOLOGICA 2014. [DOI: 10.25225/fozo.v63.i2.a3.2014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Miroslav Šálek
- Czech University of Life Sciences Prague, Faculty of Environmental Sciences, Department of Ecology, Kamýcká 129, 165 21 Praha 6, Czech Republic
| | - Václav Zámečník
- Czech University of Life Sciences Prague, Faculty of Environmental Sciences, Department of Ecology, Kamýcká 129, 165 21 Praha 6, Czech Republic
| |
Collapse
|
5
|
Werner GDA, Strassmann JE, Ivens ABF, Engelmoer DJP, Verbruggen E, Queller DC, Noë R, Johnson NC, Hammerstein P, Kiers ET. Evolution of microbial markets. Proc Natl Acad Sci U S A 2014; 111:1237-44. [PMID: 24474743 PMCID: PMC3910570 DOI: 10.1073/pnas.1315980111] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Biological market theory has been used successfully to explain cooperative behavior in many animal species. Microbes also engage in cooperative behaviors, both with hosts and other microbes, that can be described in economic terms. However, a market approach is not traditionally used to analyze these interactions. Here, we extend the biological market framework to ask whether this theory is of use to evolutionary biologists studying microbes. We consider six economic strategies used by microbes to optimize their success in markets. We argue that an economic market framework is a useful tool to generate specific and interesting predictions about microbial interactions, including the evolution of partner discrimination, hoarding strategies, specialized versus diversified mutualistic services, and the role of spatial structures, such as flocks and consortia. There is untapped potential for studying the evolutionary dynamics of microbial systems. Market theory can help structure this potential by characterizing strategic investment of microbes across a diversity of conditions.
Collapse
Affiliation(s)
- Gijsbert D. A. Werner
- Department of Ecological Science, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, The Netherlands
| | - Joan E. Strassmann
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130
| | - Aniek B. F. Ivens
- Theoretical Biology Group, Centre for Ecological and Evolutionary Studies, University of Groningen, 9700 CC, Groningen, The Netherlands
- Laboratory of Insect Social Evolution, The Rockefeller University, New York, NY 10065
| | - Daniel J. P. Engelmoer
- Department of Ecological Science, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, The Netherlands
| | - Erik Verbruggen
- Institut für Biologie, Plant Ecology, Freie Universität Berlin, 14195 Berlin, Germany
| | - David C. Queller
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130
| | - Ronald Noë
- Faculté de Psychologie, Université de Strasbourg et Ethologie Evolutive, Département Ecologie, Physiologie et Ethologie, Centre National de la Recherche Scientifique, 67087 Strasbourg Cedex, France
- Netherlands Institute of Advanced Studies, 2242 PR, Wassenaar, The Netherlands
| | - Nancy Collins Johnson
- School of Earth Sciences and Environmental Sustainability and Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011-5694; and
| | - Peter Hammerstein
- Institute for Theoretical Biology, Humboldt University, 10115 Berlin, Germany
| | - E. Toby Kiers
- Department of Ecological Science, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Brodin A, Urhan AU. Interspecific observational memory in a non-caching Parus species, the great tit Parus major. Behav Ecol Sociobiol 2014. [DOI: 10.1007/s00265-013-1679-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
7
|
Pravosudov VV, Roth II TC. Cognitive Ecology of Food Hoarding: The Evolution of Spatial Memory and the Hippocampus. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2013. [DOI: 10.1146/annurev-ecolsys-110512-135904] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Timothy C. Roth II
- Department of Psychology, Franklin and Marshall College, Lancaster, Pennsylvania 17603;
| |
Collapse
|
8
|
|
9
|
Evidence for long-term spatial memory in a parid. Anim Cogn 2011; 15:149-54. [PMID: 21773746 DOI: 10.1007/s10071-011-0440-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 06/30/2011] [Accepted: 07/04/2011] [Indexed: 01/20/2023]
Abstract
Many animals use spatial memory. Although much work has examined the accuracy of spatial memory, few studies have explicitly focused on its longevity. The importance of long-term spatial memory for foraging has been demonstrated in several cases. However, the importance of such long-term memory for all animals is unclear. In this study, we present the first evidence that a parid species (the black-capped chickadee, Poecile atricapillus) can remember the location of a single food item for at least 6 months under an associative-learning spatial memory paradigm with multiple reinforcements. We did not detect a significant difference in memory longevity between two populations of chickadees shown previously to differ in short-term spatial memory and hippocampal morphology, an area of the brain involved in spatial memory. Our study showed that small birds such as parids can maintain spatial memories for long periods, a feat shown previously only in corvids. Moreover, we were able to demonstrate this longevity within the context of only 16 repeated trials. We speculate that this ability may potentially be useful in relocating caches if reinforced by repeated visits. Future studies are necessary to test whether our results were specifically due to multiple reinforcements of the food-containing location and whether parids may have similar memory longevity during food-caching experiences in the wild.
Collapse
|
10
|
Chancellor LV, Roth TC, LaDage LD, Pravosudov VV. The effect of environmental harshness on neurogenesis: a large-scale comparison. Dev Neurobiol 2011; 71:246-52. [PMID: 20949526 PMCID: PMC3092529 DOI: 10.1002/dneu.20847] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Harsh environmental conditions may produce strong selection pressure on traits, such as memory, that may enhance fitness. Enhanced memory may be crucial for survival in animals that use memory to find food and, thus, particularly important in environments where food sources may be unpredictable. For example, animals that cache and later retrieve their food may exhibit enhanced spatial memory in harsh environments compared with those in mild environments. One way that selection may enhance memory is via the hippocampus, a brain region involved in spatial memory. In a previous study, we established a positive relationship between environmental severity and hippocampal morphology in food-caching black-capped chickadees (Poecile atricapillus). Here, we expanded upon this previous work to investigate the relationship between environmental harshness and neurogenesis, a process that may support hippocampal cytoarchitecture. We report a significant and positive relationship between the degree of environmental harshness across several populations over a large geographic area and (1) the total number of immature hippocampal neurons, (2) the number of immature neurons relative to the hippocampal volume, and (3) the number of immature neurons relative to the total number of hippocampal neurons. Our results suggest that hippocampal neurogenesis may play an important role in environments where increased reliance on memory for cache recovery is critical.
Collapse
Affiliation(s)
| | - Timothy C. Roth
- Department of Biology, University of Nevada, Reno, NV 89557, USA
| | - Lara D. LaDage
- Department of Biology, University of Nevada, Reno, NV 89557, USA
| | | |
Collapse
|
11
|
Roth TC, LaDage LD, Pravosudov VV. Variation in hippocampal morphology along an environmental gradient: controlling for the effects of day length. Proc Biol Sci 2011; 278:2662-7. [PMID: 21288947 DOI: 10.1098/rspb.2010.2585] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Environmental conditions may create increased demands for memory, which in turn may affect specific brain regions responsible for memory function. This may occur either via phenotypic plasticity or selection for individuals with enhanced cognitive abilities. For food-caching animals, in particular, spatial memory appears to be important because it may have a direct effect on fitness via their ability to accurately retrieve food caches. Our previous studies have shown that caching animals living in more harsh environments (characterized by low temperatures, high snow cover and short day lengths) possess more neurons within a larger hippocampus (Hp), a part of the brain involved in spatial memory. However, the relative role of each of these environmental features in the relationship is unknown. Here, we dissociate the effects of one theoretically important factor (day length) within the environmental severity/Hp relationship by examining food-caching birds (black-capped chickadee, Poecile atricapillus) selected at locations along the same latitude, but with very different climatic regimes. There was a significant difference in Hp attributes among populations along the same latitude with very different climatic features. Birds from the climatically mild location had significantly smaller Hp volumes and fewer Hp neurons than birds from the more harsh populations, even though all populations experienced similar day lengths. These results suggest that variables such as temperature and snow cover seem to be important even without the compounding effect of reduced day length at higher latitudes and suggest that low temperature and snow cover alone may be sufficient to generate high demands for memory and the hippocampus. Our data further confirmed that the association between harsh environment and the hippocampus in food-caching animals is robust across a large geographical area and across years.
Collapse
Affiliation(s)
- Timothy C Roth
- Department of Biology, University of Nevada, 1664 North Virginia Street, MS 314, Reno, NV 89557, USA.
| | | | | |
Collapse
|
12
|
Abstract
In this review, I will present an overview of the development of the field of scatter hoarding studies. Scatter hoarding is a conspicuous behaviour and it has been observed by humans for a long time. Apart from an exceptional experimental study already published in 1720, it started with observational field studies of scatter hoarding birds in the 1940s. Driven by a general interest in birds, several ornithologists made large-scale studies of hoarding behaviour in species such as nutcrackers and boreal titmice. Scatter hoarding birds seem to remember caching locations accurately, and it was shown in the 1960s that successful retrieval is dependent on a specific part of the brain, the hippocampus. The study of scatter hoarding, spatial memory and the hippocampus has since then developed into a study system for evolutionary studies of spatial memory. In 1978, a game theoretical paper started the era of modern studies by establishing that a recovery advantage is necessary for individual hoarders for the evolution of a hoarding strategy. The same year, a combined theoretical and empirical study on scatter hoarding squirrels investigated how caches should be spaced out in order to minimize cache loss, a phenomenon sometimes called optimal cache density theory. Since then, the scatter hoarding paradigm has branched into a number of different fields: (i) theoretical and empirical studies of the evolution of hoarding, (ii) field studies with modern sampling methods, (iii) studies of the precise nature of the caching memory, (iv) a variety of studies of caching memory and its relationship to the hippocampus. Scatter hoarding has also been the subject of studies of (v) coevolution between scatter hoarding animals and the plants that are dispersed by these.
Collapse
Affiliation(s)
- Anders Brodin
- Theoretical Ecology, Department of Ecology, Lund University, Ecology Building, S-223 62 Lund, Sweden.
| |
Collapse
|
13
|
Roth TC, Brodin A, Smulders TV, LaDage LD, Pravosudov VV. Is bigger always better? A critical appraisal of the use of volumetric analysis in the study of the hippocampus. Philos Trans R Soc Lond B Biol Sci 2010; 365:915-31. [PMID: 20156816 DOI: 10.1098/rstb.2009.0208] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A well-developed spatial memory is important for many animals, but appears especially important for scatter-hoarding species. Consequently, the scatter-hoarding system provides an excellent paradigm in which to study the integrative aspects of memory use within an ecological and evolutionary framework. One of the main tenets of this paradigm is that selection for enhanced spatial memory for cache locations should specialize the brain areas involved in memory. One such brain area is the hippocampus (Hp). Many studies have examined this adaptive specialization hypothesis, typically relating spatial memory to Hp volume. However, it is unclear how the volume of the Hp is related to its function for spatial memory. Thus, the goal of this article is to evaluate volume as a main measurement of the degree of morphological and physiological adaptation of the Hp as it relates to memory. We will briefly review the evidence for the specialization of memory in food-hoarding animals and discuss the philosophy behind volume as the main currency. We will then examine the problems associated with this approach, attempting to understand the advantages and limitations of using volume and discuss alternatives that might yield more specific hypotheses. Overall, there is strong evidence that the Hp is involved in the specialization of spatial memory in scatter-hoarding animals. However, volume may be only a coarse proxy for more relevant and subtle changes in the structure of the brain underlying changes in behaviour. To better understand the nature of this brain/memory relationship, we suggest focusing on more specific and relevant features of the Hp, such as the number or size of neurons, variation in connectivity depending on dendritic and axonal arborization and the number of synapses. These should generate more specific hypotheses derived from a solid theoretical background and should provide a better understanding of both neural mechanisms of memory and their evolution.
Collapse
Affiliation(s)
- Timothy C Roth
- Department of Biology, University of Nevada, Reno, NV 89557, USA.
| | | | | | | | | |
Collapse
|
14
|
Pravosudov VV, Smulders TV. Integrating ecology, psychology and neurobiology within a food-hoarding paradigm. Philos Trans R Soc Lond B Biol Sci 2010; 365:859-67. [PMID: 20156812 PMCID: PMC2830247 DOI: 10.1098/rstb.2009.0216] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Many animals regularly hoard food for future use, which appears to be an important adaptation to a seasonally and/or unpredictably changing environment. This food-hoarding paradigm is an excellent example of a natural system that has broadly influenced both theoretical and empirical work in the field of biology. The food-hoarding paradigm has played a major role in the conceptual framework of numerous fields from ecology (e.g. plant-animal interactions) and evolution (e.g. the coevolution of caching, spatial memory and the hippocampus) to psychology (e.g. memory and cognition) and neurobiology (e.g. neurogenesis and the neurobiology of learning and memory). Many food-hoarding animals retrieve caches by using spatial memory. This memory-based behavioural system has the inherent advantage of being tractable for study in both the field and laboratory and has been shaped by natural selection, which produces variation with strong fitness consequences in a variety of taxa. Thus, food hoarding is an excellent model for a highly integrative approach to understanding numerous questions across a variety of disciplines. Recently, there has been a surge of interest in the complexity of animal cognition such as future planning and episodic-like-memory as well as in the relationship between memory, the environment and the brain. In addition, new breakthroughs in neurobiology have enhanced our ability to address the mechanisms underlying these behaviours. Consequently, the field is necessarily becoming more integrative by assessing behavioural questions in the context of natural ecological systems and by addressing mechanisms through neurobiology and psychology, but, importantly, within an evolutionary and ecological framework. In this issue, we aim to bring together a series of papers providing a modern synthesis of ecology, psychology, physiology and neurobiology and identifying new directions and developments in the use of food-hoarding animals as a model system.
Collapse
|
15
|
Smulders TV, Gould KL, Leaver LA. Using ecology to guide the study of cognitive and neural mechanisms of different aspects of spatial memory in food-hoarding animals. Philos Trans R Soc Lond B Biol Sci 2010; 365:883-900. [PMID: 20156814 PMCID: PMC2830245 DOI: 10.1098/rstb.2009.0211] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Understanding the survival value of behaviour does not tell us how the mechanisms that control this behaviour work. Nevertheless, understanding survival value can guide the study of these mechanisms. In this paper, we apply this principle to understanding the cognitive mechanisms that support cache retrieval in scatter-hoarding animals. We believe it is too simplistic to predict that all scatter-hoarding animals will outperform non-hoarding animals on all tests of spatial memory. Instead, we argue that we should look at the detailed ecology and natural history of each species. This understanding of natural history then allows us to make predictions about which aspects of spatial memory should be better in which species. We use the natural hoarding behaviour of the three best-studied groups of scatter-hoarding animals to make predictions about three aspects of their spatial memory: duration, capacity and spatial resolution, and we test these predictions against the existing literature. Having laid out how ecology and natural history can be used to predict detailed cognitive abilities, we then suggest using this approach to guide the study of the neural basis of these abilities. We believe that this complementary approach will reveal aspects of memory processing that would otherwise be difficult to discover.
Collapse
Affiliation(s)
- Tom V Smulders
- Centre for Behaviour and Evolution and Institute of Neuroscience, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK.
| | | | | |
Collapse
|
16
|
|
17
|
The Cognition of Caching and Recovery in Food-Storing Birds. ADVANCES IN THE STUDY OF BEHAVIOR 2010. [DOI: 10.1016/s0065-3454(10)41001-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
18
|
Pfuhl G, Tjelmeland H, Molden S, Biegler R. Optimal cache search depends on precision of spatial memory and pilfering, but what if that knowledge is not perfect? Anim Behav 2009. [DOI: 10.1016/j.anbehav.2009.06.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
19
|
Healy SD, Bacon IE, Haggis O, Harris AP, Kelley LA. Explanations for variation in cognitive ability: Behavioural ecology meets comparative cognition. Behav Processes 2008; 80:288-94. [PMID: 18992792 DOI: 10.1016/j.beproc.2008.10.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Revised: 09/29/2008] [Accepted: 10/04/2008] [Indexed: 11/15/2022]
Abstract
Sara Shettleworth has played a defining role in the development of animal cognition and its integration into other parts of biology, especially behavioural ecology. Here we chart some of that progress in understanding the causes and importance of variation in cognitive ability and highlight how Tinbergen's levels of explanation provide a useful framework for this field. We also review how experimental design is crucial in investigating cognition and stress the need for naturalistic experiments and field studies. We focus particularly on the example of the relationship among food hoarding, spatial cognition and hippocampal structure, and review the conflicting evidence for sex differences in spatial cognition. We finish with speculation that a combination of Tinbergen and Shettleworth-style approaches would be the way to grapple with the as-yet unanswered questions of why birds mimic heterospecifics.
Collapse
Affiliation(s)
- S D Healy
- Institute of Evolutionary Biology, Ashworth Laboratories, School of Biological Sciences, University of Edinburgh, Kings Buildings, Edinburgh EH93JT, UK.
| | | | | | | | | |
Collapse
|
20
|
Brodin A, Bolhuis JJ. Memory and Brain in Food-Storing Birds: Space Oddities or Adaptive Specializations? Ethology 2008. [DOI: 10.1111/j.1439-0310.2008.01508.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Brydges NM, Heathcote RJ, Braithwaite VA. Habitat stability and predation pressure influence learning and memory in populations of three-spined sticklebacks. Anim Behav 2008. [DOI: 10.1016/j.anbehav.2007.08.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
22
|
|
23
|
Mauck B, Dehnhardt G. Spatial multiple-choice matching in a harbour seal (Phoca vitulina): differential encoding of landscape versus local feature information? Anim Cogn 2007; 10:397-405. [PMID: 17377825 DOI: 10.1007/s10071-007-0074-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2006] [Revised: 01/02/2007] [Accepted: 01/19/2007] [Indexed: 11/24/2022]
Abstract
The nature of spatial information used for memorizing and recalling places is largely unclear. Earlier studies tested integration of geometric and feature information mostly during reorientation in artificial environments without including time as a memory-critical component. Here, we tested a harbour seal in a delayed matching-to-sample task (DMTS) in a familiar environment under two spatial multiple-choice conditions. The feature condition consisted of a DMTS task with four comparison stimuli presented on fixed positions in a classic matching apparatus and was designed to make stimulus features the most prominent information. The landscape condition consisted of a DMTS task in a familiar environment with four places marked by comparison stimuli and allowed the use of all available spatial information including geometrical and feature information. The seal's performance was impaired by delays of 3, 6, 9 or 12 s only in the feature condition; a delay of 12 s resulted in chance level performance. Replacing the comparison stimuli at the apparatus with identical spheres resulted in impaired performance. Performance in the landscape condition was impaired neither by delays nor by replacing comparison stimuli with spheres. Landscape information obviously was encoded redundantly and could be recalled more reliably and longer than feature information, which reveals feature information to be a less valuable type of spatial information for memorizing and recalling places.
Collapse
Affiliation(s)
- Björn Mauck
- Allgemeine Zoologie and Neurobiologie, Ruhr-Universität Bochum, ND6/33, 44780, Bochum, Germany.
| | | |
Collapse
|
24
|
Ward C, Smuts BB. Quantity-based judgments in the domestic dog (Canis lupus familiaris). Anim Cogn 2006; 10:71-80. [PMID: 16941158 DOI: 10.1007/s10071-006-0042-7] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2006] [Revised: 06/02/2006] [Accepted: 07/15/2006] [Indexed: 10/24/2022]
Abstract
We examined the ability of domestic dogs to choose the larger versus smaller quantity of food in two experiments. In experiment 1, we investigated the ability of 29 dogs (results from 18 dogs were used in the data analysis) to discriminate between two quantities of food presented in eight different combinations. Choices were simultaneously presented and visually available at the time of choice. Overall, subjects chose the larger quantity more often than the smaller quantity, but they found numerically close comparisons more difficult. In experiment 2, we tested two dogs from experiment 1 under three conditions. In condition 1, we used similar methods from experiment 1 and tested the dogs multiple times on the eight combinations from experiment 1 plus one additional combination. In conditions 2 and 3, the food was visually unavailable to the subjects at the time of choice, but in condition 2, food choices were viewed simultaneously before being made visually unavailable, and in condition 3, they were viewed successively. In these last two conditions, and especially in condition 3, the dogs had to keep track of quantities mentally in order to choose optimally. Subjects still chose the larger quantity more often than the smaller quantity when the food was not simultaneously visible at the time of choice. Olfactory cues and inadvertent cuing by the experimenter were excluded as mechanisms for choosing larger quantities. The results suggest that, like apes tested on similar tasks, some dogs can form internal representations and make mental comparisons of quantity.
Collapse
Affiliation(s)
- Camille Ward
- Department of Psychology, University of Michigan, 1012 East Hall, 530 Church Street, Ann Arbor, MI 48109-1043, USA.
| | | |
Collapse
|