1
|
Fujita T, Aoki N, Mori C, Homma KJ, Yamaguchi S. Molecular biology of serotonergic systems in avian brains. Front Mol Neurosci 2023; 16:1226645. [PMID: 37538316 PMCID: PMC10394247 DOI: 10.3389/fnmol.2023.1226645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/05/2023] [Indexed: 08/05/2023] Open
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) is a phylogenetically conserved neurotransmitter and modulator. Neurons utilizing serotonin have been identified in the central nervous systems of all vertebrates. In the central serotonergic system of vertebrate species examined so far, serotonergic neurons have been confirmed to exist in clusters in the brainstem. Although many serotonin-regulated cognitive, behavioral, and emotional functions have been elucidated in mammals, equivalents remain poorly understood in non-mammalian vertebrates. The purpose of this review is to summarize current knowledge of the anatomical organization and molecular features of the avian central serotonergic system. In addition, selected key functions of serotonin are briefly reviewed. Gene association studies between serotonergic system related genes and behaviors in birds have elucidated that the serotonergic system is involved in the regulation of behavior in birds similar to that observed in mammals. The widespread distribution of serotonergic modulation in the central nervous system and the evolutionary conservation of the serotonergic system provide a strong foundation for understanding and comparing the evolutionary continuity of neural circuits controlling corresponding brain functions within vertebrates. The main focus of this review is the chicken brain, with this type of poultry used as a model bird. The chicken is widely used not only as a model for answering questions in developmental biology and as a model for agriculturally useful breeding, but also in research relating to cognitive, behavioral, and emotional processes. In addition to a wealth of prior research on the projection relationships of avian brain regions, detailed subdivision similarities between avian and mammalian brains have recently been identified. Therefore, identifying the neural circuits modulated by the serotonergic system in avian brains may provide an interesting opportunity for detailed comparative studies of the function of serotonergic systems in mammals.
Collapse
Affiliation(s)
- Toshiyuki Fujita
- Department of Biological Sciences, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Naoya Aoki
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Chihiro Mori
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Koichi J. Homma
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Shinji Yamaguchi
- Department of Biological Sciences, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| |
Collapse
|
2
|
Riyahi S, Carrillo-Ortiz JG, Uribe F, Calafell F, Senar JC. Risk-taking coping style correlates with SERT SNP290 polymorphisms in free-living great tits. J Exp Biol 2022; 225:274842. [PMID: 35332918 DOI: 10.1242/jeb.243342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 03/10/2022] [Indexed: 11/20/2022]
Abstract
The coping style of an individual in relation to potentially dangerous situations has been suggested to be inherited in a polygenic fashion, being SERT one of the candidate genes. In this paper, we assessed in free-living great tits Parus major the association between SNP290 in the SERT promoter and three standard fear-related behaviors, namely the response of the birds to a black and white flag fixed to the top of the nest-box, distress calling rate of the birds in the hand once captured and the hissing call of incubating females when approached by a predator. We found a strong association between SNP290 polymorphism and the three risk-taking behaviors, with birds with genotype CT entering faster to the nest box with the flag and displaying more distress calls and less hissing calls. CT birds could therefore be described as more proactive than CC individuals. These results also suggest that hissing behavior should be regarded as a fear-induced shy behavior, and confirm that SERT has an important function in relation to risk aversion behaviors and coping style.
Collapse
Affiliation(s)
- Sepand Riyahi
- Museu de Ciències Naturals de Barcelona, Psseig Picasso s/n, Parc Ciutadella, 08003 Barcelona, Spain.,Evolutionary Biology, Bielefeld University, Bielefeld, Germany
| | - José G Carrillo-Ortiz
- Museu de Ciències Naturals de Barcelona, Psseig Picasso s/n, Parc Ciutadella, 08003 Barcelona, Spain
| | - Francesc Uribe
- Museu de Ciències Naturals de Barcelona, Psseig Picasso s/n, Parc Ciutadella, 08003 Barcelona, Spain
| | - Francesc Calafell
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Juan Carlos Senar
- Museu de Ciències Naturals de Barcelona, Psseig Picasso s/n, Parc Ciutadella, 08003 Barcelona, Spain
| |
Collapse
|
3
|
Grunst AS, Grunst ML, Staes N, Thys B, Pinxten R, Eens M. Serotonin transporter (SERT) polymorphisms, personality and problem-solving in urban great tits. Sci Rep 2021; 11:24270. [PMID: 34930949 PMCID: PMC8688470 DOI: 10.1038/s41598-021-03466-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 11/02/2021] [Indexed: 11/30/2022] Open
Abstract
Understanding underlying genetic variation can elucidate how diversity in behavioral phenotypes evolves and is maintained. Genes in the serotonergic signaling pathway, including the serotonin transporter gene (SERT), are candidates for affecting animal personality, cognition and fitness. In a model species, the great tit (Parus major), we reevaluated previous findings suggesting relationships between SERT polymorphisms, neophobia, exploratory behavior and fitness parameters, and performed a first test of the relationship between single nucleotide polymorphisms (SNPs) in SERT and problem-solving in birds. We found some evidence for associations between SERT SNPs and neophobia, exploratory behavior and laying date. Furthermore, several SNPs were associated with behavioral patterns and success rates during obstacle removal problem-solving tests performed at nest boxes. In females, minor allele homozygotes (AA) for nonsynonymous SNP226 in exon 1 made fewer incorrect attempts and were more likely to problem-solve. In both sexes, there was some evidence that minor allele homozygotes (CC) for SNP84 in exon 9 were more likely to problem-solve. Only one SNP-behavior relationship was statistically significant after correcting for multiple comparisons, but several were associated with substantial effect sizes. Our study provides a foundation for future research on the genetic basis of behavioral and cognitive variation in wild animal populations.
Collapse
Affiliation(s)
- Andrea S Grunst
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, Antwerp, Belgium.
- Littoral Environnement Et Sociétés, La Rochelle Université, La Rochelle, France.
| | - Melissa L Grunst
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, Antwerp, Belgium
- Littoral Environnement Et Sociétés, La Rochelle Université, La Rochelle, France
| | - Nicky Staes
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, Antwerp, Belgium
- Centre for Research and Conservation, Royal Zoological Society of Antwerp, Antwerp, Belgium
| | - Bert Thys
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, Antwerp, Belgium
| | - Rianne Pinxten
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, Antwerp, Belgium
- Faculty of Social Sciences, Antwerp School of Education, University of Antwerp, Antwerp, Belgium
| | - Marcel Eens
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
4
|
Bukor B, Seress G, Pipoly I, Sándor K, Sinkovics C, Vincze E, Liker A. Double-brooding and annual breeding success of great tits in urban and forest habitats. Curr Zool 2021; 68:517-525. [PMID: 36324531 PMCID: PMC9616069 DOI: 10.1093/cz/zoab096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/06/2021] [Indexed: 11/13/2022] Open
Abstract
Urban areas differ from natural habitats in several environmental features that influence the characteristics of animals living there. For example, birds often start breeding seasonally earlier and fledge fewer offspring per brood in cities than in natural habitats. However, longer breeding seasons in cities may increase the frequency of double-brooding in urban compared with nonurban populations, thus potentially increasing urban birds’ annual reproductive output and resulting in lower habitat difference in reproductive success than estimated by studies focusing on first clutches only. In this study, we investigated 2 urban and 2 forests great tit Parus major populations from 2013 to 2019. We compared the probability of double-brooding and the total number of annually fledged chicks per female between urban and forest habitats, while controlling for the effects of potentially confounding variables. There was a trend for a higher probability of double-brooding in urban (44% of females) than in forest populations (36%), although this was not consistent between the 2 urban sites. Females produced significantly fewer fledglings annually in the cities than in the forest sites, and this difference was present both within single- and double-brooded females. Furthermore, double-brooded urban females produced a similar number of fledglings per season as single-brooded forest females. These results indicate that double-brooding increases the reproductive success of female great tits in both habitats, but urban females cannot effectively compensate in this way for their lower reproductive output per brood. However, other mechanisms like increased post-fledging survival can mitigate habitat differences in reproductive success.
Collapse
Affiliation(s)
- Boglárka Bukor
- Behavioral Ecology Research Group, Center for Natural Sciences, University of Pannonia, Veszprém H-8200, Hungary
| | - Gábor Seress
- MTA-PE Evolutionary Ecology Research Group, University of Pannonia, Veszprém H-8200, Hungary
| | - Ivett Pipoly
- Behavioral Ecology Research Group, Center for Natural Sciences, University of Pannonia, Veszprém H-8200, Hungary
- MTA-PE Evolutionary Ecology Research Group, University of Pannonia, Veszprém H-8200, Hungary
| | - Krisztina Sándor
- Behavioral Ecology Research Group, Center for Natural Sciences, University of Pannonia, Veszprém H-8200, Hungary
- MTA-ELTE Comparative Ethology Research Group, Budapest, Hungary
| | - Csenge Sinkovics
- Behavioral Ecology Research Group, Center for Natural Sciences, University of Pannonia, Veszprém H-8200, Hungary
| | - Ernő Vincze
- Behavioral Ecology Research Group, Center for Natural Sciences, University of Pannonia, Veszprém H-8200, Hungary
- MTA-PE Evolutionary Ecology Research Group, University of Pannonia, Veszprém H-8200, Hungary
- Department of Biology, Theoretical Population Ecology and Evolution Group, Lund University, Lund, Sweden
| | - András Liker
- Behavioral Ecology Research Group, Center for Natural Sciences, University of Pannonia, Veszprém H-8200, Hungary
- MTA-PE Evolutionary Ecology Research Group, University of Pannonia, Veszprém H-8200, Hungary
| |
Collapse
|
5
|
The serotonin transporter gene and female personality variation in a free-living passerine. Sci Rep 2021; 11:8577. [PMID: 33883685 PMCID: PMC8060275 DOI: 10.1038/s41598-021-88225-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/09/2021] [Indexed: 02/02/2023] Open
Abstract
Quantifying variation in behaviour-related genes provides insight into the evolutionary potential of repeatable among-individual variation in behaviour (i.e. personality). Yet, individuals typically also plastically adjust their behaviour in response to environmental conditions and/or age, thereby complicating the detection of genotype-phenotype associations. Here, using a population of free-living great tits (Parus major), we assessed the association between single nucleotide polymorphisms (SNPs) in the serotonin transporter gene (SERT) and two repeatable behavioural traits, i.e. female-female aggression and female hissing behaviour. For female-female aggression, a trait showing age-related plasticity, we found no evidence for associations with SERT SNPs, even when assessing potential age-dependent effects of SERT genotype on aggression. We also found no strong support for associations between SERT SNPs and hissing behaviour, yet we identified two synonymous polymorphisms (exon 13 SNP66 and exon 12 SNP144) of particular interest, each explaining about 1.3% of the total variation in hissing behaviour. Overall, our results contribute to the general understanding of the biological underpinning of complex behavioural traits and will facilitate further (meta-analytic) research on behaviour-related genes. Moreover, we emphasize that future molecular genetic studies should consider age-dependent genotype-phenotype associations for behavioural trait (co)variation, as this will vastly improve our understanding of the proximate causes and ultimate consequences of personality variation in natural populations.
Collapse
|
6
|
Thys B, Pinxten R, Eens M. Long-term repeatability and age-related plasticity of female behaviour in a free-living passerine. Anim Behav 2021. [DOI: 10.1016/j.anbehav.2020.11.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
7
|
Tilgar V, Koosa K. Hissing females of great tits (
Parus major
) have lower breeding success than non‐hissing individuals. Ethology 2019. [DOI: 10.1111/eth.12952] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Vallo Tilgar
- Department of Zoology Institute of Ecology and Earth Sciences University of Tartu Tartu Estonia
| | - Kaarin Koosa
- Department of Zoology Institute of Ecology and Earth Sciences University of Tartu Tartu Estonia
| |
Collapse
|