1
|
Boussard A, Ahlkvist M, Corral-López A, Fong S, Fitzpatrick J, Kolm N. Relative telencephalon size does not affect collective motion in the guppy ( Poecilia reticulata). Behav Ecol 2024; 35:arae033. [PMID: 38779596 PMCID: PMC11110457 DOI: 10.1093/beheco/arae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 03/26/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
Collective motion is common across all animal taxa, from swarming insects to schools of fish. The collective motion requires intricate behavioral integration among individuals, yet little is known about how evolutionary changes in brain morphology influence the ability for individuals to coordinate behavior in groups. In this study, we utilized guppies that were selectively bred for relative telencephalon size, an aspect of brain morphology that is normally associated with advanced cognitive functions, to examine its role in collective motion using an open-field assay. We analyzed high-resolution tracking data of same-sex shoals consisting of 8 individuals to assess different aspects of collective motion, such as alignment, attraction to nearby shoal members, and swimming speed. Our findings indicate that variation in collective motion in guppy shoals might not be strongly affected by variation in relative telencephalon size. Our study suggests that group dynamics in collectively moving animals are likely not driven by advanced cognitive functions but rather by fundamental cognitive processes stemming from relatively simple rules among neighboring individuals.
Collapse
Affiliation(s)
- Annika Boussard
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18B, 106 91 Stockholm, Sweden
| | - Mikaela Ahlkvist
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18B, 106 91 Stockholm, Sweden
| | - Alberto Corral-López
- Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 752 36 Uppsala, Sweden
| | - Stephanie Fong
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18B, 106 91 Stockholm, Sweden
| | - John Fitzpatrick
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18B, 106 91 Stockholm, Sweden
| | - Niclas Kolm
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18B, 106 91 Stockholm, Sweden
| |
Collapse
|
2
|
Rands SA, Ioannou CC. Personality variation is eroded by simple social behaviours in collective foragers. PLoS Comput Biol 2023; 19:e1010908. [PMID: 36862622 PMCID: PMC9980820 DOI: 10.1371/journal.pcbi.1010908] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 01/31/2023] [Indexed: 03/03/2023] Open
Abstract
The movement of groups can be heavily influenced by 'leader' individuals who differ from the others in some way. A major source of differences between individuals is the repeatability and consistency of their behaviour, commonly considered as their 'personality', which can influence both position within a group as well as the tendency to lead. However, links between personality and behaviour may also depend upon the immediate social environment of the individual; individuals who behave consistently in one way when alone may not express the same behaviour socially, when they may be conforming with the behaviour of others. Experimental evidence shows that personality differences can be eroded in social situations, but there is currently a lack of theory to identify the conditions where we would expect personality to be suppressed. Here, we develop a simple individual-based framework considering a small group of individuals with differing tendencies to perform risky behaviours when travelling away from a safe home site towards a foraging site, and compare the group behaviours when the individuals follow differing rules for aggregation behaviour determining how much attention they pay to the actions of their fellow group-members. We find that if individuals pay attention to the other members of the group, the group will tend to remain at the safe site for longer, but then travel faster towards the foraging site. This demonstrates that simple social behaviours can result in the repression of consistent inter-individual differences in behaviour, giving the first theoretical consideration of the social mechanisms behind personality suppression.
Collapse
Affiliation(s)
- Sean A. Rands
- School of Biological Sciences, University of Bristol, United Kingdom
| | | |
Collapse
|
3
|
Western Hognose Snakes ( Heterodon nasicus) Prefer Environmental Enrichment. Animals (Basel) 2022; 12:ani12233347. [PMID: 36496867 PMCID: PMC9739432 DOI: 10.3390/ani12233347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
The environmental enrichment needs of snakes are often disregarded. Using preference testing, we aimed to shed light on the enrichment preferences of a popular pet species, the western hognose snake (Heterodon nasicus). Snakes' enclosures were divided into enriched and standard sides. The enriched half had substrate for burrowing, interactive stimuli, and a large water dish. The standard half had paper towel substrate and a small water dish. Each side also contained a single shelter. We provided belly heat to create a thermal gradient on one side of the cage. Snakes were observed for 6 days, four times daily. We predicted a preference for enriched conditions and, as snakes are ectothermic, a preference for the warmer side. Snakes were additionally given an exploration assay, to explore whether differences in preference for environmental enrichment interact with boldness levels. We found that hognose snakes preferred enrichment, and the strength of this preference increased over time. Preference for enrichment was stronger when the enriched side was cooler. This may be due to the burrowing tendencies of these snakes. We found no relationship between preference and boldness. These findings emphasise the importance of preference testing in establishing research-informed enrichment opportunities for reptiles.
Collapse
|
4
|
Skinner M, Brown S, Kumpan LT, Miller N. Snake personality: Differential effects of development and social experience. Behav Ecol Sociobiol 2022. [DOI: 10.1007/s00265-022-03227-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Santos MES, Horký P, Grabicová K, Hubená P, Slavík O, Grabic R, Douda K, Randák T. Traces of tramadol in water impact behaviour in a native European fish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 212:111999. [PMID: 33550078 DOI: 10.1016/j.ecoenv.2021.111999] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/21/2021] [Accepted: 01/26/2021] [Indexed: 06/12/2023]
Abstract
Tramadol is a widely used analgesic with additional antidepressant and anxiolytic effects. This compound has been reported in continental waters reaching concentrations of µg/L as a consequence of its inefficient removal in sewage treatment plants and increasing use over time. In this study, European chubs (Squalius cephalus) were exposed to 1 µg/L of tramadol in water for 42 days with a subsequent 14 days of depuration. Our results revealed that chubs exposed to this analgesic underwent changes in their behaviour as compared to the control group. The behavioural outcome was also influenced by the individual concentration of tramadol in brain tissue. In particular, experimental fish presented anxiolytic-like effects, characterized by less bold and less social individuals. Exposed animals were less frequently out of the shelter and moved a shorter distance, indicating that they explored the new environment less during the boldness test. In the novel object recognition experiment, although they distinguished the new item, they examined it less and displayed a reduced activity. Shoal cohesion was disrupted as observed in an increased distance between individuals. After the depuration phase, this alteration remained whereas the boldness effect disappeared. Moreover, the degree of behavioural changes was correlated with the concentration of the substance in brain. According to our findings, chronic presence of tramadol in the environment can impact the fitness of exposed aquatic fauna by altering evolutionary crucial behaviours.
Collapse
Affiliation(s)
- Maria Eugenia Sancho Santos
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic.
| | - Pavel Horký
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague 6, Czech Republic
| | - Kateřina Grabicová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Pavla Hubená
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague 6, Czech Republic
| | - Ondřej Slavík
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague 6, Czech Republic
| | - Roman Grabic
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Karel Douda
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague 6, Czech Republic
| | - Tomáš Randák
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| |
Collapse
|