1
|
Sun C, Liu H, Teng J, Feng W, Wang D, Wang X, Zhao J, Wang Q. Impact of Microplastic Exposure on Sand Crab Scopimera globosa Behavior: Implications for Microplastic Transport and Sulfur Cycling through Bioturbation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:7039-7053. [PMID: 40167463 DOI: 10.1021/acs.est.5c01192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The accumulation of microplastics (MPs) in estuarine regions and their ecological consequences have become global environmental concerns. Estuarine sediments function as major sinks for MPs and hotspots for critical biogeochemical processes, which are significantly influenced by benthic bioturbation. However, the impacts of MPs on the behavior of highly mobile benthic organisms and the ecological effects of bioturbation activities remain poorly understood. This study utilized laboratory simulation experiments, AI-based behavioral tracking, and metagenomic sequencing to systematically examine the effects of sand crab bioturbation on MPs migration, sediment physicochemical properties and sulfur cycling processes. Results demonstrated that sand crab bioturbation substantially enhanced the vertical migration of MPs, with fluxes to surface layers and the overlying water increasing by 27-fold compared to undisturbed conditions. Exposure to PE-MPs reduced sand crabs' surface foraging intensity and induced behavioral abnormalities. The crabs actively avoided MPs, exhibiting a preference for burrowing and residing in deeper sediment layers. This behavioral shift significantly altered microbial community distributions, with an increase of Pseudomonadota abundance and a decline of sulfate-reducing bacteria Thermodesulfobacteriota abundance. Furthermore, bioturbation accelerated sulfate oxidation in deeper sediments while inhibited dissimilatory sulfate reduction. This study is the first to identify the role of bioturbation in promoting the upward migration of MPs in sediments. Altered sand crab bioturbation will impact sediment biogeochemistry, estuarine function, and coastal resilience.
Collapse
Affiliation(s)
- Chaofan Sun
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, P. R. China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, P. R. China
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, P. R. China
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hui Liu
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, P. R. China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, P. R. China
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, P. R. China
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, P. R. China
| | - Jia Teng
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, P. R. China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, P. R. China
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, P. R. China
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, P. R. China
| | - Weiwei Feng
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Dongyu Wang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, P. R. China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, P. R. China
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, P. R. China
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiaodan Wang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, P. R. China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, P. R. China
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, P. R. China
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jianmin Zhao
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, P. R. China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, P. R. China
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, P. R. China
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, P. R. China
| | - Qing Wang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, P. R. China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, P. R. China
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, P. R. China
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, P. R. China
| |
Collapse
|
2
|
Scali S, Sacchi R, Gozzo E, Chiesa S, Coladonato AJ, Zuffi MAL, Mangiacotti M. The size of a smell: assessment of rival’s relative size from femoral secretions in the common wall lizards, Podarcis muralis (Laurenti, 1768). Behav Ecol 2023. [DOI: 10.1093/beheco/arac128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Abstract
Animal communication depends on signals conveying information to a receiver who must perceive and decode them. Signals involved in territoriality are usually complex stimuli that should be correctly interpreted to avoid unnecessary conflicts. Lacertids use both visual and chemical stimuli in modulating their aggressive response against conspecifics and the rival’s size is one of the most important information, affecting the success probability in combat. To assess the actual ability of decoding information about a rival’s size based on its chemical stimulus alone, 60 males of Podarcis muralis were tested for three consecutive days in an arena bearing a mirror (to simulate an equal-sized intruder), and the chemical cues (femoral secretions) from an unknown individual of different size. Significant differences were observed in tongue-flicks number, which grew as the size difference between the focal lizard and the secretion donor decreased. This can be interpreted as the need for the lizard to better evaluate the potential competitor’s characteristics. The size difference also affected the number of bites against the mirror. They increased when the size of the focal lizard was larger than the donor triggering the aggressive response with a higher probability of winning the contest. This confirms that the focal lizard had correctly decoded the information about the opponent’s size by chemical stimulus. Although previous studies have shown that some components of the chemical signals are potentially informative about the signaler’s size, this is the first demonstration that male P. muralis is actually able to decode and use such information.
Collapse
Affiliation(s)
- Stefano Scali
- Museo di Storia Naturale di Milano , Corso Venezia 55, I-20121 Milano , Italy
| | - Roberto Sacchi
- Dipartimento di Scienze della Terra e dell’Ambiente, Università di Pavia , Viale Torquato Taramelli 24, I-27100, Pavia , Italy
| | - Elisabetta Gozzo
- Museo di Storia Naturale di Milano , Corso Venezia 55, I-20121 Milano , Italy
| | - Stefano Chiesa
- Museo di Storia Naturale di Milano , Corso Venezia 55, I-20121 Milano , Italy
| | - Alan J Coladonato
- Dipartimento di Scienze della Terra e dell’Ambiente, Università di Pavia , Viale Torquato Taramelli 24, I-27100, Pavia , Italy
| | - Marco A L Zuffi
- Museo di Storia Naturale dell’Università di Pisa , Via Roma 79 , I-56011 Calci, PI , Italy
| | - Marco Mangiacotti
- Dipartimento di Scienze della Terra e dell’Ambiente, Università di Pavia , Viale Torquato Taramelli 24, I-27100, Pavia , Italy
| |
Collapse
|
3
|
Scali S, Mangiacotti M, Sacchi R, Coladonato AJ, Falaschi M, Saviano L, Rampoldi MG, Crozi M, Perotti C, Zucca F, Gozzo E, Zuffi MAL. Close encounters of the three morphs: Does color affect aggression in a polymorphic lizard? Aggress Behav 2021; 47:430-438. [PMID: 33682154 DOI: 10.1002/ab.21961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 02/08/2021] [Accepted: 02/23/2021] [Indexed: 11/08/2022]
Abstract
Color polymorphism is genetically controlled, and the process generating and maintaining morphs can affect speciation/extinction rates. Color badges are useful signals in intraspecific communication because they convey information about alternative strategies and can potentially decrease unnecessary conflicts among different color morphs. Competition and aggressive interactions among color morphs can contribute to polymorphism maintenance. This could lead to an uneven spatial distribution of morphs in a population because the local frequency of each morph establishes the intensity of the competition and the fitness of each male. We used a polymorphic lizard, Podarcis muralis, to assess if aggression varies among morphs under two contrasting hypotheses: a heteromorphic versus homomorphic aggression. We used laboratory mirror tests after lizard color manipulation, and we verified the consistency of results with an analysis of the spatial distribution of morphs in a wild population. Both the experiments confirmed that aggression is more common during homomorphic than heteromorphic contests. The adoption of alternative behavioral strategies that minimize risks and costs could facilitate the stable coexistence of the phenotypes and reduce competition. A bias in aggression would advantage rarer morph, which would suffer less harassment by common morphs obtaining a fitness advantage. This process would be negatively-frequency-dependent and would stabilize polymorphism, possibly contributing to sympatric speciation.
Collapse
Affiliation(s)
- Stefano Scali
- Department of Vertebrate Zoology Natural History Museum of Milan Milano Italy
| | - Marco Mangiacotti
- Department of Earth and Environmental Sciences University of Pavia Pavia Italy
| | - Roberto Sacchi
- Department of Earth and Environmental Sciences University of Pavia Pavia Italy
| | | | - Mattia Falaschi
- Department of Environmental Science and Policy University of Milan Milano Italy
| | - Luca Saviano
- Department of Vertebrate Zoology Natural History Museum of Milan Milano Italy
| | | | - Matteo Crozi
- Department of Earth and Environmental Sciences University of Pavia Pavia Italy
| | - Cesare Perotti
- Department of Earth and Environmental Sciences University of Pavia Pavia Italy
| | - Francesco Zucca
- Department of Earth and Environmental Sciences University of Pavia Pavia Italy
| | - Elisabetta Gozzo
- Department of Vertebrate Zoology Natural History Museum of Milan Milano Italy
| | | |
Collapse
|