1
|
Do male panther chameleons use different aspects of color change to settle disputes? Naturwissenschaften 2022; 109:13. [DOI: 10.1007/s00114-022-01784-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 12/23/2021] [Accepted: 01/06/2022] [Indexed: 10/19/2022]
|
2
|
Korzan WJ, Summers CH. Evolution of stress responses refine mechanisms of social rank. Neurobiol Stress 2021; 14:100328. [PMID: 33997153 PMCID: PMC8105687 DOI: 10.1016/j.ynstr.2021.100328] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 02/08/2023] Open
Abstract
Social rank functions to facilitate coping responses to socially stressful situations and conditions. The evolution of social status appears to be inseparably connected to the evolution of stress. Stress, aggression, reward, and decision-making neurocircuitries overlap and interact to produce status-linked relationships, which are common among both male and female populations. Behavioral consequences stemming from social status and rank relationships are molded by aggressive interactions, which are inherently stressful. It seems likely that the balance of regulatory elements in pro- and anti-stress neurocircuitries results in rapid but brief stress responses that are advantageous to social dominance. These systems further produce, in coordination with reward and aggression circuitries, rapid adaptive responding during opportunities that arise to acquire food, mates, perch sites, territorial space, shelter and other resources. Rapid acquisition of resources and aggressive postures produces dominant individuals, who temporarily have distinct fitness advantages. For these reasons also, change in social status can occur rapidly. Social subordination results in slower and more chronic neural and endocrine reactions, a suite of unique defensive behaviors, and an increased propensity for anxious and depressive behavior and affect. These two behavioral phenotypes are but distinct ends of a spectrum, however, they may give us insights into the troubling mechanisms underlying the myriad of stress-related disorders to which they appear to be evolutionarily linked.
Collapse
Affiliation(s)
| | - Cliff H Summers
- Department of Biology, University of South Dakota, Vermillion, SD 57069 USA.,Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA.,Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD 57105 USA
| |
Collapse
|
3
|
Korzan WJ, Summers TR, Summers CH. Neural and endocrine responses to social stress differ during actual and virtual aggressive interactions or physiological sign stimuli. Behav Processes 2021; 182:104294. [PMID: 33290833 PMCID: PMC7872145 DOI: 10.1016/j.beproc.2020.104294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/05/2020] [Accepted: 12/01/2020] [Indexed: 12/19/2022]
Abstract
Neural and endocrine responses provide quantitative measures that can be used for discriminating behavioral output analyses. Experimental design differences often make it difficult to compare results with respect to the mechanisms producing behavioral actions. We hypothesize that comparisons of distinctive behavioral paradigms or modification of social signals can aid in teasing apart the subtle differences in animal responses to social stress. Eyespots are a unique sympathetically activated sign stimulus of the lizard Anolis carolinensis that influence aggression and social dominance. Eyespot formation along with measurements of central and plasma monoamines enable comparison of paired male aggressive interactions with those provoked by a mirror image. The results suggest that experiments employing artificial application of sign stimuli in dyadic interactions amplify behavioral, neural and endocrine responses, and foreshorten behavioral interactions compared to those that develop among pairs naturally. While the use of mirrors to induce aggressive behavior produces simulated interactions that appear normal, some behavioral, neural, and endocrine responses are amplified in these experiments as well. In contrast, mirror image interactions also limit the level of certain behavioral and neuroendocrine responses. As true social communication does not occur during interaction with mirror images, rank relationships can never be established. Multiple experimental approaches, such as combining naturalistic social interactions with virtual exchanges and/or manipulation of sign stimuli, can often provide added depth to understanding the motivation, context, and mechanisms that produce specific behaviors. The addition of endocrine and neural measurements helps identify the contributions of specific behavioral elements to the social processes proceeding.
Collapse
Affiliation(s)
| | - Tangi R Summers
- Department of Biology, University of South Dakota, Vermillion, SD, 57069, USA; Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA; Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD, 57105, USA
| | - Cliff H Summers
- Department of Biology, University of South Dakota, Vermillion, SD, 57069, USA; Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA; Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD, 57105, USA.
| |
Collapse
|
4
|
Dickerson AL, Rankin KJ, Cadena V, Endler JA, Stuart-Fox D. Rapid beard darkening predicts contest outcome, not copulation success, in bearded dragon lizards. Anim Behav 2020. [DOI: 10.1016/j.anbehav.2020.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
5
|
The role of personality, cognition, and affective state in same-sex contests in the red junglefowl. Behav Ecol Sociobiol 2019. [DOI: 10.1007/s00265-019-2762-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Abstract
Intra-species contests are common in the animal kingdom and can have fitness consequences. Most research on what predicts contest outcome focuses on morphology, although differences in personality and cognition may also be involved. Supporting this, more proactive individuals often have dominant status, although the causality of this relationship is rarely investigated. Contest initiators often win; thus, individuals that are more proactive in their personality (e.g., more aggressive, risk-taking) or cognition (e.g., more optimistic, impulsive) may initiate contests more often. To investigate this, we assayed the behavior and cognition of sexually mature male and female red junglefowl (Gallus gallus), a species in which both sexes contest over social status, before staging intra-sexual contests. We confirm that contest initiators were more likely to win. In males, individuals that behaved more boldly in a novel arena test were more likely to initiate and win contests. Female initiators tended to be less active in novel object test, more aggressive in a restrained opponent test, and respond less optimistically in a cognitive judgement bias test, whereas the main predictor of whether a female would win a contest was whether she initiated it. These results suggest that behaviors attributed to proactive and reactive personalities, and—at least for female red junglefowl—optimism, can affect contest initiation and outcome. Therefore, within species, and depending on sex, different aspects of behavior and cognition may independently affect contest initiation and outcome. The generality of these findings, and their fitness consequences, requires further investigation.
Significance statement
In red junglefowl, we explored how behavior previously shown to describe personality, cognition, and affective state affected initiation and outcome of intra-sexual contests, by staging contests between sexually mature individuals previously assayed in behavioral and cognitive tests. In both sexes, contest initiators usually won. Bolder males were more likely to initiate and win contests. Female contests initiators were less active, more aggressive, and less optimistic. Our results suggest that personality and cognition could affect the initiation and outcome of contests and that how this occurs may differ between sexes.
Collapse
|
6
|
Ligon RA, McGraw KJ. A chorus of color: hierarchical and graded information content of rapid color change signals in chameleons. Behav Ecol 2018. [DOI: 10.1093/beheco/ary076] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Russell A Ligon
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Kevin J McGraw
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
7
|
Favati A, Udén E, Leimar O, Løvlie H. Personality remains: no effect of 3-week social status experience on personality in male fowl. Behav Ecol 2017. [DOI: 10.1093/beheco/arx160] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Anna Favati
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Eva Udén
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Olof Leimar
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Hanne Løvlie
- IFM Biology, Linköping University, Linköping, Sweden
| |
Collapse
|
8
|
Summers TR, Summers TL, Carpenter RE, Smith JP, Young SL, Meyerink B, Orr TZ, Arendt DH, Summers CH. Learning and CRF-Induced Indecision during Escape and Submission in Rainbow Trout during Socially Aggressive Interactions in the Stress-Alternatives Model. Front Neurosci 2017; 11:515. [PMID: 28966574 PMCID: PMC5605647 DOI: 10.3389/fnins.2017.00515] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 08/31/2017] [Indexed: 01/18/2023] Open
Abstract
Socially stressful environments induce a phenotypic dichotomy of coping measures for populations in response to a dominant aggressor and given a route of egress. This submission- (Stay) or escape-oriented (Escape) dichotomy represents individual decision-making under the stressful influence of hostile social environments. We utilized the Stress-Alternatives Model (SAM) to explore behavioral factors which might predict behavioral phenotype in rainbow trout. The SAM is a compartmentalized tank, with smaller and larger trout separated by an opaque divider until social interaction, and another divider occluding a safety zone, accessible by way of an escape route only large enough for the smaller fish. We hypothesized that distinctive behavioral responses during the first social interaction would indicate a predisposition for one of the behavioral phenotypes in the subsequent interactions. Surprisingly, increased amount or intensity of aggression received had no significant effect on promoting escape in test fish. In fact, during the first day of interaction, fish that turned toward their larger opponent during attack eventually learned to escape. Escaping fish also learn to monitor the patrolling behavior of aggressors, and eventually escape primarily when they are not being observed. Escape per se, was also predicted in trout exhibiting increased movements directed toward the escape route. By contrast, fish that consistently remained in the tank with the aggressor (Stay) showed significantly higher frequency of swimming in subordinate positions, at the top or the bottom of the water column, as well as sitting at the bottom. In addition, a corticotropin-releasing factor (CRF)-induced behavior, snap-shake, was also displayed in untreated fish during aggressive social interaction, and blocked by a CRF1 receptor antagonist. Especially prevalent among the Stay phenotype, snap-shake indicates indecision regarding escape-related behaviors. Snap-shake was also exhibited by fish of the Escape phenotype, showing a positive correlation with latency to escape. These results demonstrate adaptive responses to stress that reflect evolutionarily conserved stress neurocircuitry which may translate to psychological disorders and decision-making across vertebrate taxa.
Collapse
Affiliation(s)
- Tangi R Summers
- Department of Biology, University of South DakotaVermillion, SD, United States.,Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South DakotaVermillion, SD, United States.,Veterans Affairs Research Service, Sioux Falls VA Health Care SystemSioux Falls, SD, United States
| | - Torrie L Summers
- Department of Biology, University of South DakotaVermillion, SD, United States.,Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South DakotaVermillion, SD, United States
| | - Russ E Carpenter
- Program in Writing and Rhetoric, Stanford UniversityStanford, CA, United States
| | - Justin P Smith
- Veterans Affairs Research Service, Sioux Falls VA Health Care SystemSioux Falls, SD, United States.,Institute of PossibilitySioux Falls, SD, United States.,Data Analytics, Sanford HealthSioux Falls, SD, United States
| | | | - Brandon Meyerink
- Department of Biology, University of South DakotaVermillion, SD, United States
| | - T Zachary Orr
- Department of Biology, University of South DakotaVermillion, SD, United States.,Veterans Affairs Research Service, Sioux Falls VA Health Care SystemSioux Falls, SD, United States
| | - David H Arendt
- Children's Hospital Colorado-Research InstituteAurora, CO, United States
| | - Cliff H Summers
- Department of Biology, University of South DakotaVermillion, SD, United States.,Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South DakotaVermillion, SD, United States.,Veterans Affairs Research Service, Sioux Falls VA Health Care SystemSioux Falls, SD, United States
| |
Collapse
|
9
|
Fatsini E, Rey S, Ibarra-Zatarain Z, Mackenzie S, Duncan NJ. Dominance behaviour in a non-aggressive flatfish, Senegalese sole (Solea senegalensis) and brain mRNA abundance of selected transcripts. PLoS One 2017; 12:e0184283. [PMID: 28877259 PMCID: PMC5587333 DOI: 10.1371/journal.pone.0184283] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 08/21/2017] [Indexed: 11/18/2022] Open
Abstract
Dominance is defined as the preferential access to limited resources. The present study aimed to characterise dominance in a non-aggressive flatfish species, the Senegalese sole (Solea senegalensis) by 1) identifying dominance categories and associated behaviours and 2) linking dominance categories (dominant and subordinate) with the abundance of selected mRNA transcripts in the brain. Early juveniles (n = 74, 37 pairs) were subjected to a dyadic dominance test, related to feeding, and once behavioural phenotypes had been described the abundance of ten selected mRNAs related to dominance and aggressiveness was measured in the brain. Late juveniles were subjected to two dyadic dominance tests (n = 34, 17 pairs), related to feeding and territoriality and one group test (n = 24, 4 groups of 6 fish). Sole feeding first were categorized as dominant and sole feeding second or not feeding as subordinate. Three social behaviours (i. "Resting the head" on another fish, ii. "Approaching" another fish, iii. "Swimming above another" fish) were associated with dominance of feeding. Two other variables (i. Total time occupying the preferred area during the last 2 hours of the 24 h test, ii. Organisms occupying the preferred area when the test ended) were representative of dominance in the place preference test. In all tests, dominant fish compared to subordinate fish displayed a significantly higher number of the behaviours "Rest the head" and "Approaches". Moreover, dominant sole dominated the sand at the end of the test, and in the group test dominated the area close to the feed delivery point before feed was delivered. The mRNA abundance of the selected mRNAs related to neurogenesis (nrd2) and neuroplasticity (c-fos) in dominant sole compared to subordinate were significantly different. This is the first study to characterise dominance categories with associated behaviours and mRNA abundance in Senegalese sole and provides tools to study dominance related problems in feeding and reproduction in aquaculture.
Collapse
Affiliation(s)
| | - Sonia Rey
- Institute of Aquaculture, Pathfoot Building, University of Stirling, Stirling, Scotland, United Kingdom
| | - Zohar Ibarra-Zatarain
- IRTA, Sant Carles de la Ràpita, Tarragona, Spain.,CONACYT-UAN-CENIT, Calle 3 S/N, Ciudad industrial, Tepic, Mexico
| | - Simon Mackenzie
- Institute of Aquaculture, Pathfoot Building, University of Stirling, Stirling, Scotland, United Kingdom
| | | |
Collapse
|
10
|
Buwalda B, Koolhaas JM, de Boer SF. Trait aggressiveness does not predict social dominance of rats in the Visible Burrow System. Physiol Behav 2017; 178:134-143. [DOI: 10.1016/j.physbeh.2017.01.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 12/01/2016] [Accepted: 01/05/2017] [Indexed: 01/25/2023]
|
11
|
Wilczynski W, Quispe M, Muñoz MI, Penna M. Arginine Vasotocin, the Social Neuropeptide of Amphibians and Reptiles. Front Endocrinol (Lausanne) 2017; 8:186. [PMID: 28824546 PMCID: PMC5545607 DOI: 10.3389/fendo.2017.00186] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 07/18/2017] [Indexed: 12/04/2022] Open
Abstract
Arginine vasotocin (AVT) is the non-mammalian homolog of arginine vasopressin (AVP) and, like vasopressin, serves as an important modulator of social behavior in addition to its peripheral functions related to osmoregulation, reproductive physiology, and stress hormone release. In amphibians and reptiles, the neuroanatomical organization of brain AVT cells and fibers broadly resembles that seen in mammals and other taxa. Both parvocellular and magnocellular AVT-containing neurons are present in multiple populations located mainly in the basal forebrain from the accumbens-amygdala area to the preoptic area and hypothalamus, from which originate widespread fiber connections spanning the brain with a particularly heavy innervation of areas associated with social behavior and decision-making. As for mammalian AVP, AVT is present in greater amounts in males in many brain areas, and its presence varies seasonally, with hormonal state, and in males with differing social status. AVT's social influence is also conserved across herpetological taxa, with significant effects on social signaling and aggression, and, based on the very small number of studies investigating more complex social behaviors in amphibians and reptiles, AVT may also modulate parental care and social bonding when it is present in these vertebrates. Within this conserved pattern, however, both AVT anatomy and social behavior effects vary significantly across species. Accounting for this diversity represents a challenge to understanding the mechanisms by which AVT exerts its behavioral effects, as well are a potential tool for discerning the structure-function relationships underlying AVT's many effects on behavior.
Collapse
Affiliation(s)
- Walter Wilczynski
- Neuroscience Institute, Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA, United States
- *Correspondence: Walter Wilczynski,
| | - Maricel Quispe
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Matías I. Muñoz
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Mario Penna
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
12
|
Keifer J, Summers CH. Putting the "Biology" Back into "Neurobiology": The Strength of Diversity in Animal Model Systems for Neuroscience Research. Front Syst Neurosci 2016; 10:69. [PMID: 27597819 PMCID: PMC4992696 DOI: 10.3389/fnsys.2016.00069] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 08/02/2016] [Indexed: 12/23/2022] Open
Abstract
Current trends in neuroscience research have moved toward a reliance on rodent animal models to study most aspects of brain function. Such laboratory-reared animals are highly inbred, have been disengaged from their natural environments for generations and appear to be of limited predictive value for successful clinical outcomes. In this Perspective article, we argue that research on a rich diversity of animal model systems is fundamental to new discoveries in evolutionarily conserved core physiological and molecular mechanisms that are the foundation of human brain function. Analysis of neural circuits across phyla will reveal general computational solutions that form the basis for adaptive behavioral responses. Further, we stress that development of ethoexperimental approaches to improve our understanding of behavioral nuance will help to realign our research strategies with therapeutic goals and improve the translational validity of specific animal models. Finally, we suggest that neuroscience has a role in environmental conservation of habitat and fauna that will preserve and protect the ecological settings that drive species-specific behavioral adaptations. A rich biodiversity will enhance our understanding of human brain function and lead in unpredicted directions for development of therapeutic treatments for neurological disorders.
Collapse
Affiliation(s)
- Joyce Keifer
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota Vermillion, SD, USA
| | - Cliff H Summers
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South DakotaVermillion, SD, USA; Department of Biology, University of South DakotaVermillion, SD, USA
| |
Collapse
|
13
|
Silva PIM, Martins CIM, Höglund E, Gjøen HM, Øverli Ø. Feeding motivation as a personality trait in Nile tilapia (Oreochromis niloticus): role of serotonergic neurotransmission. FISH PHYSIOLOGY AND BIOCHEMISTRY 2014; 40:1547-1557. [PMID: 24858238 DOI: 10.1007/s10695-014-9947-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 05/08/2014] [Indexed: 06/03/2023]
Abstract
Consistent individual variation in behaviour and physiology (i.e. animal personality or coping style) has emerged as a central topic in many biological disciplines. Yet, underlying mechanisms of crucial personality traits like feeding behaviour in novel environments remain unclear. Comparative studies, however, reveal a strong degree of evolutionary conservation of neural mechanisms controlling such behaviours throughout the vertebrate lineage. Previous studies have indicated duration of stress-induced anorexia as a consistent individual characteristic in teleost fishes. This study aims to determine to what degree brain 5-hydroxytryptamine (5-HT, serotonin) activity pertains to this aspect of animal personality, as a correlate to feed anticipatory behaviour and recovery of feed intake after transfer to a novel environment. Crucial to the definition of animal personality, a strong degree of individual consistency in different measures of feeding behaviour (feeding latency and feeding score), was demonstrated. Furthermore, low serotonergic activity in the hypothalamus was highly correlated with a personality characterized by high feeding motivation, with feeding motivation represented as an overall measure incorporating several behavioural parameters in a Principle Component Analyses (PCA). This study thus confirms individual variation in brain 5-HT neurotransmission as a correlate to complex behavioural syndromes related to feeding motivation.
Collapse
Affiliation(s)
- Patricia I M Silva
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, P.O. Box 5003, 1432, Aas, Norway,
| | | | | | | | | |
Collapse
|
14
|
Millot S, Cerqueira M, Castanheira MF, Øverli Ø, Oliveira RF, Martins CIM. Behavioural stress responses predict environmental perception in European sea bass (Dicentrarchus labrax). PLoS One 2014; 9:e108800. [PMID: 25264870 PMCID: PMC4181860 DOI: 10.1371/journal.pone.0108800] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 09/01/2014] [Indexed: 11/20/2022] Open
Abstract
Individual variation in the response to environmental challenges depends partly on innate reaction norms, partly on experience-based cognitive/emotional evaluations that individuals make of the situation. The goal of this study was to investigate whether pre-existing differences in behaviour predict the outcome of such assessment of environmental cues, using a conditioned place preference/avoidance (CPP/CPA) paradigm. A comparative vertebrate model (European sea bass, Dicentrarchus labrax) was used, and ninety juvenile individuals were initially screened for behavioural reactivity using a net restraining test. Thereafter each individual was tested in a choice tank using net chasing as aversive stimulus or exposure to familiar conspecifics as appetitive stimulus in the preferred or non preferred side respectively (called hereafter stimulation side). Locomotor behaviour (i.e. time spent, distance travelled and swimming speed in each tank side) of each individual was recorded and analysed with video software. The results showed that fish which were previously exposed to appetitive stimulus increased significantly the time spent on the stimulation side, while aversive stimulus led to a strong decrease in time spent on the stimulation side. Moreover, this study showed clearly that proactive fish were characterised by a stronger preference for the social stimulus and when placed in a putative aversive environment showed a lower physiological stress responses than reactive fish. In conclusion, this study showed for the first time in sea bass, that the CPP/CPA paradigm can be used to assess the valence (positive vs. negative) that fish attribute to different stimuli and that individual behavioural traits is predictive of how stimuli are perceived and thus of the magnitude of preference or avoidance behaviour.
Collapse
Affiliation(s)
- Sandie Millot
- CCMAR-CIMAR L.A., Universidade do Algarve, Campus de Gambelas, Faro, Portugal
- * E-mail:
| | - Marco Cerqueira
- CCMAR-CIMAR L.A., Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | | | - Øyvind Øverli
- Norwegian University of Life Sciences, Department of Animal and Aquacultural Sciences, Ås, Norway
| | - Rui F. Oliveira
- ISPA Unidade de Investigação em Eco-Etologia Integrative Behavioural Biology Group, Lisboa, Portugal
- Champalimaud Neuroscience Programme, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | |
Collapse
|
15
|
Favati A, Leimar O, Løvlie H. Personality predicts social dominance in male domestic fowl. PLoS One 2014; 9:e103535. [PMID: 25072296 PMCID: PMC4114777 DOI: 10.1371/journal.pone.0103535] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 07/04/2014] [Indexed: 01/21/2023] Open
Abstract
Individuals in social species commonly form dominance relationships, where dominant individuals enjoy greater access to resources compared to subordinates. A range of factors such as sex, age, body size and prior experiences has to varying degrees been observed to affect the social status an individual obtains. Recent work on animal personality (i.e. consistent variation in behavioural responses of individuals) demonstrates that personality can co-vary with social status, suggesting that also behavioural variation can play an important role in establishment of status. We investigated whether personality could predict the outcome of duels between pairs of morphologically matched male domestic fowl (Gallus gallus domesticus), a species where individuals readily form social hierarchies. We found that males that more quickly explored a novel arena, or remained vigilant for a longer period following the playback of a warning call were more likely to obtain a dominant position. These traits were uncorrelated to each other and were also uncorrelated to aggression during the initial part of the dominance-determining duel. Our results indicate that several behavioural traits independently play a role in the establishment of social status, which in turn can have implications for the reproductive success of different personality types.
Collapse
Affiliation(s)
- Anna Favati
- Department of Zoology, Stockholm University, Stockholm, Sweden
- * E-mail: (AF) (AF); (HL) (HL)
| | - Olof Leimar
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Hanne Løvlie
- IFM Biology, Linköping University, Linköping, Sweden
- * E-mail: (AF) (AF); (HL) (HL)
| |
Collapse
|
16
|
Garcia MJ, Murphree J, Wilson J, Earley RL. Mechanisms of decision making during contests in green anole lizards: prior experience and assessment. Anim Behav 2014. [DOI: 10.1016/j.anbehav.2014.03.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Favati A, Leimar O, Radesäter T, Løvlie H. Social status and personality: stability in social state can promote consistency of behavioural responses. Proc Biol Sci 2013; 281:20132531. [PMID: 24225462 PMCID: PMC3843839 DOI: 10.1098/rspb.2013.2531] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Stability of 'state' has been suggested as an underlying factor explaining behavioural stability and animal personality (i.e. variation among, and consistency within individuals in behavioural responses), but the possibility that stable social relationships represent such states remains unexplored. Here, we investigated the influence of social status on the expression and consistency of behaviours by experimentally changing social status between repeated personality assays. We used male domestic fowl (Gallus gallus domesticus), a social species that forms relatively stable dominance hierarchies, and showed that behavioural responses were strongly affected by social status, but also by individual characteristics. The level of vigilance, activity and exploration changed with social status, whereas boldness appeared as a stable individual property, independent of status. Furthermore, variation in vocalization predicted future social status, indicating that individual behaviours can both be a predictor and a consequence of social status, depending on the aspect in focus. Our results illustrate that social states contribute to both variation and stability in behavioural responses, and should therefore be taken into account when investigating and interpreting variation in personality.
Collapse
Affiliation(s)
- Anna Favati
- Department of Zoology, Stockholm University, , 106 91 Stockholm, Sweden, Department of Physics, Chemistry and Biology, Linköping University, , 581 83 Linköping, Sweden
| | | | | | | |
Collapse
|
18
|
Assessment Strategies and the Effects of Fighting Experience on Future Contest Performance in the Green Anole (Anolis carolinensis). Ethology 2012. [DOI: 10.1111/j.1439-0310.2012.02072.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
19
|
Morrison KE, Swallows CL, Cooper MA. Effects of dominance status on conditioned defeat and expression of 5-HT1A and 5-HT2A receptors. Physiol Behav 2011; 104:283-90. [PMID: 21362435 PMCID: PMC3118936 DOI: 10.1016/j.physbeh.2011.02.033] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 12/22/2010] [Accepted: 02/22/2011] [Indexed: 12/26/2022]
Abstract
Past experience can alter how individuals respond to stressful events. The brain serotonin system is a key factor modulating stress-related behavior and may contribute to individual variation in coping styles. In this study we investigated whether dominant and subordinate hamsters respond differently to social defeat and whether their behavioral responses are associated with changes in 5-HT1A and 5-HT2A receptor immunoreactivity in several limbic brain regions. We paired weight-matched hamsters in daily aggressive encounters for two weeks so that they formed a stable dominance relationship. We also included controls that were exposed to an empty cage each day for two weeks. Twenty-four hours after the final pairing or empty cage exposure, subjects were socially defeated in 3, 5-min encounters with a more aggressive hamster. Twenty-four hours after social defeat, animals were tested for conditioned defeat in a 5-min social interaction test with a non-aggressive intruder. We collected brains following conditioned defeat testing and performed immunohistochemistry for 5-HT1A and 5-HT2A receptors. We found that dominants showed less submissive and defensive behavior at conditioned defeat testing compared to both subordinates and controls. Additionally, both dominants and subordinates had an increased number of 5-HT1A immunopositive cells in the basolateral amygdala compared to controls. Subordinates also had more 5-HT1A immunopositive cells in the dorsal medial amygdala than did controls. Finally, dominants had fewer 5-HT1A immunopositive cells in the paraventricular nucleus of the hypothalamus compared to controls. Our results indicate that dominant social status results in a blunted conditioned defeat response and a distinct pattern of 5-HT1A receptor expression, which may contribute to resistance to conditioned defeat.
Collapse
Affiliation(s)
- Kathleen E Morrison
- Department of Psychology, University of Tennessee, Knoxville, TN 37996, USA.
| | | | | |
Collapse
|
20
|
Ruiz-Gomez MDL, Huntingford FA, Øverli Ø, Thörnqvist PO, Höglund E. Response to environmental change in rainbow trout selected for divergent stress coping styles. Physiol Behav 2011; 102:317-22. [DOI: 10.1016/j.physbeh.2010.11.023] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 11/10/2010] [Accepted: 11/18/2010] [Indexed: 11/25/2022]
|
21
|
Herrel A, Andrade DV, de Carvalho JE, Brito A, Abe A, Navas C. Aggressive behavior and performance in the Tegu lizard Tupinambis merianae. Physiol Biochem Zool 2010; 82:680-5. [PMID: 19758090 DOI: 10.1086/605935] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Aggression is an important component of behavior in many animals and may be crucial to providing individuals with a competitive advantage when resources are limited. Although much is known about the effects of catecholamines and hormones on aggression, relatively few studies have examined the effects of physical performance on aggression. Here we use a large, sexually dimorphic teiid lizard to test whether individuals that show high levels of physical performance (bite force) are also more aggressive toward a potential threat (i.e., a human approaching the lizard). Our results show that independent of their sex, larger individuals with higher bite forces were indeed more aggressive. Moreover, our data show that individuals with higher bite forces tend to show decreased escape responses and are slower, providing evidence for a trade-off between fight and flight abilities. As bite force increased dramatically with body size, we suggest that large body size and bite force may reduce the threshold for an individual to engage in an aggressive encounter, allowing it to potentially gain or maintain resources and fight off predators while minimizing the risk of injury.
Collapse
Affiliation(s)
- Anthony Herrel
- Département d'Ecologie et de Gestion de la Biodiversité, 57 rue Cuvier, Case postale 55, 75231, Paris Cedex 5, France.
| | | | | | | | | | | |
Collapse
|
22
|
Ling TJ, Summers CH, Renner KJ, Watt MJ. Opponent recognition and social status differentiate rapid neuroendocrine responses to social challenge. Physiol Behav 2010; 99:571-8. [PMID: 20138068 DOI: 10.1016/j.physbeh.2010.01.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Revised: 10/13/2009] [Accepted: 01/21/2010] [Indexed: 11/24/2022]
Abstract
Individual social status discriminates rapid neuroendocrine responses to non-social stress in male Anolis carolinensis, but whether such status-influenced reactions are retained in response to subsequent social stress is unknown. Dominant and subordinate males modify their behavioral responses to social challenge according to familiarity of the opponent, suggesting that accompanying neuroendocrine responses may differ according to opponent recognition despite social rank. We examined endocrine and neurochemical correlates of prior social status and opponent recognition during the opening stages of social challenge. Male pairs interacted and established dominant/subordinate status, followed by 3 days separation. Subsequently, subjects were paired with either the same opponent or an unfamiliar male according to rank (dominant with subordinate). After 90 s of social exposure, subjects were caught and brains and plasma collected for measurement of circulating corticosterone and limbic monoamines. Controls included pairs experiencing just one 90 s encounter plus a group of non-interacting subjects. Opponent recognition differentiated status-influenced responses, such that dominant lizards paired with familiar subordinate opponents had increased hippocampal dopamine and epinephrine, but showed increased plasma corticosterone and ventral tegmental area (VTA) norepinephrine when challenged with an unfamiliar opponent. Subordinate lizards encountering familiar opponents also had increased corticosterone, along with decreased hippocampal dopamine and increased VTA epinephrine, but showed no changes in response to an unfamiliar opponent. Such plasticity in status-influenced rapid neuroendocrine responses according to opponent recognition may be necessary for facilitating production of behavioral responses adaptive for particular social contexts, such as encountering a novel versus familiar opponent.
Collapse
Affiliation(s)
- Travis J Ling
- Department of Biology, University of South Dakota, 414 East Clark St, Vermillion, SD 57069, USA
| | | | | | | |
Collapse
|
23
|
Ling TJ, Forster GL, Watt MJ, Korzan WJ, Renner KJ, Summers CH. Social status differentiates rapid neuroendocrine responses to restraint stress. Physiol Behav 2009; 96:218-32. [DOI: 10.1016/j.physbeh.2008.10.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Revised: 10/01/2008] [Accepted: 10/02/2008] [Indexed: 11/25/2022]
|
24
|
Korzan WJ, Summers CH. Behavioral diversity and neurochemical plasticity: selection of stress coping strategies that define social status. BRAIN, BEHAVIOR AND EVOLUTION 2007; 70:257-66. [PMID: 17914257 DOI: 10.1159/000105489] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Social interactions include a variety of stimulating but challenging factors that are the basis for strategies that allow individuals to cope with novel or familiar stressful situations. Evolutionarily conserved strategies have been identified that reflect specific behavioral and physiological identities. In this review we discuss a unique model for social stress in the lizard Anolis carolinensis, which has characteristics amenable to an investigation of individual differences in behavioral responses via central and sympathetic neurochemical adaptation. Profiles of proactive and reactive phenotypes of male A. carolinensis are relatively stable, yet retain limited flexibility that allows for the development of the social system over time. For male A. carolinensis, the celerity of social signal expression and response translate into future social standing. In addition, proactive aggressive, courtship, and feeding behaviors also predict social rank, but are not as important as prior interactions and memories of previous opponents to modify behavioral output and affect social status. The central neurotransmitters dopamine and serotonin, and the endocrine stress axis (HPA) appear to be the fundamental link to adaptive stress coping strategies during social interactions. Only small adaptations to these neural and endocrine systems are necessary to produce the variability measured in behavioral responses to stressful social interactions. These neuroendocrine factors are also manifest in responses to other stimuli and form the basis of heritable strategies for coping with stress.
Collapse
Affiliation(s)
- Wayne J Korzan
- Department of Biological Sciences, Neuroscience Program, Stanford University, Stanford, CA 94305-5020, USA.
| | | |
Collapse
|
25
|
Sørensen C, Øverli Ø, Summers CH, Nilsson GE. Social Regulation of Neurogenesis in Teleosts. BRAIN, BEHAVIOR AND EVOLUTION 2007; 70:239-46. [PMID: 17914255 DOI: 10.1159/000105487] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Salmonid fishes such as the rainbow trout (Oncorhynchus mykiss) are frequently used to study behavioral and neuroendocrine effects of socially induced stress. A predictable aggressive response to territorial intrusion, a well described neuroanatomy, and many essential similarities in the stress response in fishes and other vertebrates are among the advantages of this comparative model. One conspicuous difference when compared to mammals, however, is that in teleost fish and other non-mammalian vertebrates, neurogenesis persists into adulthood to a much higher degree. Very little is known about the functional significance of individual differences in the rate of brain cell proliferation in fish, or whether structural changes in the fish brain are influenced by the social environment. In this paper we discuss the observation that brain cell proliferation is reduced in subordinate fish, focusing in particular on whether such individual variation reflects a difference in coping style or is indeed a response to social interactions.
Collapse
|
26
|
Summers CH, Winberg S. Interactions between the neural regulation of stress and aggression. ACTA ACUST UNITED AC 2007; 209:4581-9. [PMID: 17114393 DOI: 10.1242/jeb.02565] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Socially aggressive interaction is stressful. What is more, social aggression is stressful for both dominant and subordinate animals. Much of the neurocircuitry for stress and aggression overlap. The pattern of neurochemical and hormonal events stimulated by social interaction make it clear that subtle differences in this pattern of response distinguish social rank. The neurotransmitter serotonin (5-HT) responds rapidly to stress, and also appears to play the most important role for inhibitory regulation of aggressive interactions. In addition, the adrenocortical/interrenal steroid hormones corticosterone and cortisol are responsive to stress and influence aggression. However, while 5-HT and glucocorticoids can both be inhibitory to aggression, the relationship between 5-HT and glucocorticoids is not straightforward, and much of the distinctions in function depend upon timing. Neither is inhibitory during the early stressful phase of aggression. This transmitter-hormone combination follows and influences a four-stage functional pattern of effect: (1) predisposed (positively or negatively) toward aggression, (2) motivated toward behavior, (3) responsive to stress (including aggression) and passively allowing aggression, and finally (4) chronically applied 5-HT and glucocorticoids inhibit aggression.
Collapse
Affiliation(s)
- Cliff H Summers
- Department of Biology, University of South Dakota, Vermillion, SD 57069 USA.
| | | |
Collapse
|
27
|
Øverli Ø, Sørensen C, Pulman KGT, Pottinger TG, Korzan W, Summers CH, Nilsson GE. Evolutionary background for stress-coping styles: relationships between physiological, behavioral, and cognitive traits in non-mammalian vertebrates. Neurosci Biobehav Rev 2006; 31:396-412. [PMID: 17182101 DOI: 10.1016/j.neubiorev.2006.10.006] [Citation(s) in RCA: 339] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Accepted: 10/30/2006] [Indexed: 10/23/2022]
Abstract
Reactions to stress vary between individuals, and physiological and behavioral responses tend to be associated in distinct suites of correlated traits, often termed stress-coping styles. In mammals, individuals exhibiting divergent stress-coping styles also appear to exhibit intrinsic differences in cognitive processing. A connection between physiology, behavior, and cognition was also recently demonstrated in strains of rainbow trout (Oncorhynchus mykiss) selected for consistently high or low cortisol responses to stress. The low-responsive (LR) strain display longer retention of a conditioned response, and tend to show proactive behaviors such as enhanced aggression, social dominance, and rapid resumption of feed intake after stress. Differences in brain monoamine neurochemistry have also been reported in these lines. In comparative studies, experiments with the lizard Anolis carolinensis reveal connections between monoaminergic activity in limbic structures, proactive behavior in novel environments, and the establishment of social status via agonistic behavior. Together these observations suggest that within-species diversity of physiological, behavioral and cognitive correlates of stress responsiveness is maintained by natural selection throughout the vertebrate sub-phylum.
Collapse
Affiliation(s)
- Øyvind Øverli
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 As, Norway.
| | | | | | | | | | | | | |
Collapse
|