1
|
On Boundedness and Growth of Unsteady Solutions Under the Double Porosity/Permeability Model. Transp Porous Media 2021. [DOI: 10.1007/s11242-020-01520-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
2
|
Mohammadkhah M, Marinkovic D, Zehn M, Checa S. A review on computer modeling of bone piezoelectricity and its application to bone adaptation and regeneration. Bone 2019; 127:544-555. [PMID: 31356890 DOI: 10.1016/j.bone.2019.07.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 07/17/2019] [Accepted: 07/20/2019] [Indexed: 02/07/2023]
Abstract
Bone is a hierarchical, multiphasic and anisotropic structure which in addition possess piezoelectric properties. The generation of piezoelectricity in bone is a complex process which has been shown to play a key role both in bone adaptation and regeneration. In order to understand the complex biological, mechanical and electrical interactions that take place during these processes, several computer models have been developed and used to test hypothesis on potential mechanisms behind experimental observations. This paper aims to review the available literature on computer modeling of bone piezoelectricity and its application to bone adaptation and healing. We first provide a brief overview of the fundamentals of piezoelectricity and bone piezoelectric effects. We then review how these properties have been used in computational models of bone adaptation and electromechanical behaviour of bone. In addition, in the last section, we summarize current limitations and potential directions for future work.
Collapse
Affiliation(s)
- Melika Mohammadkhah
- Department of Structural Mechanics, Berlin Institute of Technology, Fakultät V - Institut für Mechanik, FG Strukturmechanik und Strukturberechnung, Sekr. C 8-3, Geb. M Str. des 17, Juni 135, D-10623 Berlin, Germany.
| | - Dragan Marinkovic
- Department of Structural Mechanics, Berlin Institute of Technology, Fakultät V - Institut für Mechanik, FG Strukturmechanik und Strukturberechnung, Sekr. C 8-3, Geb. M Str. des 17, Juni 135, D-10623 Berlin, Germany; Faculty of Mechanical Engineering, University of Nis, Aleksandra Medvedeva 14, 18000 Nis, Serbia.
| | - Manfred Zehn
- Department of Structural Mechanics, Berlin Institute of Technology, Fakultät V - Institut für Mechanik, FG Strukturmechanik und Strukturberechnung, Sekr. C 8-3, Geb. M Str. des 17, Juni 135, D-10623 Berlin, Germany.
| | - Sara Checa
- Department of Structural Mechanics, Berlin Institute of Technology, Fakultät V - Institut für Mechanik, FG Strukturmechanik und Strukturberechnung, Sekr. C 8-3, Geb. M Str. des 17, Juni 135, D-10623 Berlin, Germany; Julius Wolff Institute, Charité - Universitätsmedizin Berlin, Föhrer Str. 15, 13353 Berlin, Germany.
| |
Collapse
|
3
|
Abstract
Biomedical research and clinical practice are struggling to cope with the growing complexity that the progress of health care involves. The most challenging diseases, those with the largest socioeconomic impact (cardiovascular conditions; musculoskeletal conditions; cancer; metabolic, immunity, and neurodegenerative conditions), are all characterized by a complex genotype-phenotype interaction and by a "systemic" nature that poses a challenge to the traditional reductionist approach. In 2005 a small group of researchers discussed how the vision of computational physiology promoted by the Physiome Project could be translated into clinical practice and formally proposed the term Virtual Physiological Human. Our knowledge about these diseases is fragmentary, as it is associated with molecular and cellular processes on the one hand and with tissue and organ phenotype changes (related to clinical symptoms of disease conditions) on the other. The problem could be solved if we could capture all these fragments of knowledge into predictive models and then compose them into hypermodels that help us tame the complexity that such systemic behavior involves. In 2005 this was simply not possible-the necessary methods and technologies were not available. Now, 10 years later, it seems the right time to reflect on the original vision, the results achieved so far, and what remains to be done.
Collapse
Affiliation(s)
- Marco Viceconti
- Department of Mechanical Engineering and Insigneo Institute for in silico Medicine, University of Sheffield, Sheffield S1 3JD, United Kingdom;
| | - Peter Hunter
- Auckland Bioengineering Institute, University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
4
|
Giorgi M, Verbruggen SW, Lacroix D. In silico bone mechanobiology: modeling a multifaceted biological system. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2016; 8:485-505. [PMID: 27600060 PMCID: PMC5082538 DOI: 10.1002/wsbm.1356] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 06/27/2016] [Accepted: 07/27/2016] [Indexed: 12/04/2022]
Abstract
Mechanobiology, the study of the influence of mechanical loads on biological processes through signaling to cells, is fundamental to the inherent ability of bone tissue to adapt its structure in response to mechanical stimulation. The immense contribution of computational modeling to the nascent field of bone mechanobiology is indisputable, having aided in the interpretation of experimental findings and identified new avenues of inquiry. Indeed, advances in computational modeling have spurred the development of this field, shedding new light on problems ranging from the mechanical response to loading by individual cells to tissue differentiation during events such as fracture healing. To date, in silico bone mechanobiology has generally taken a reductive approach in attempting to answer discrete biological research questions, with research in the field broadly separated into two streams: (1) mechanoregulation algorithms for predicting mechanobiological changes to bone tissue and (2) models investigating cell mechanobiology. Future models will likely take advantage of advances in computational power and techniques, allowing multiscale and multiphysics modeling to tie the many separate but related biological responses to loading together as part of a larger systems biology approach to shed further light on bone mechanobiology. Finally, although the ever‐increasing complexity of computational mechanobiology models will inevitably move the field toward patient‐specific models in the clinic, the determination of the context in which they can be used safely for clinical purpose will still require an extensive combination of computational and experimental techniques applied to in vitro and in vivo applications. WIREs Syst Biol Med 2016, 8:485–505. doi: 10.1002/wsbm.1356 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Mario Giorgi
- Department of Oncology and Metabolism and INSIGNEO Institute for In Silico Medicine, University of Sheffield, Sheffield, UK
| | | | - Damien Lacroix
- INSIGNEO Institute for In Silico Medicine, Department of Mechanical Engineering, University of Sheffield, Sheffield, UK.
| |
Collapse
|
5
|
Malgaretti P, Pagonabarraga I, Rubi JM. Entropic electrokinetics: recirculation, particle separation, and negative mobility. PHYSICAL REVIEW LETTERS 2014; 113:128301. [PMID: 25279646 DOI: 10.1103/physrevlett.113.128301] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Indexed: 05/28/2023]
Abstract
We show that when particles are suspended in an electrolyte confined between corrugated charged surfaces, electrokinetic flows lead to a new set of phenomena such as particle separation, mixing for low-Reynolds micro- and nanometric devices, and negative mobility. Our analysis shows that such phenomena arise, for incompressible fluids, due to the interplay between the electrostatic double layer and the corrugated geometrical confinement and that they are magnified when the width of the channel is comparable to the Debye length. Our characterization allows us to understand the physical origin of such phenomena, therefore, shedding light on their possible relevance in a wide variety of situations ranging from nano- and microfluidic devices to biological systems.
Collapse
Affiliation(s)
- Paolo Malgaretti
- Department de Fisica Fonamental, Universitat de Barcelona, Carrer Martí i Franqués, 08028-Barcelona, Spain
| | - Ignacio Pagonabarraga
- Department de Fisica Fonamental, Universitat de Barcelona, Carrer Martí i Franqués, 08028-Barcelona, Spain
| | - J Miguel Rubi
- Department de Fisica Fonamental, Universitat de Barcelona, Carrer Martí i Franqués, 08028-Barcelona, Spain and Department of Chemistry, Imperial College London, SW7 2AZ London, United Kingdom
| |
Collapse
|
6
|
Lemaire T, Kaiser J, Naili S, Sansalone V. Textural versus electrostatic exclusion-enrichment effects in the effective chemical transport within the cortical bone: a numerical investigation. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2013; 29:1223-1242. [PMID: 23804591 DOI: 10.1002/cnm.2571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 05/30/2013] [Accepted: 06/03/2013] [Indexed: 06/02/2023]
Abstract
Interstitial fluid within bone tissue is known to govern the remodelling signals' expression. Bone fluid flow is generated by skeleton deformation during the daily activities. Due to the presence of charged surfaces in the bone porous matrix, the electrochemical phenomena occurring in the vicinity of mechanosensitive bone cells, the osteocytes, are key elements in the cellular communication. In this study, a multiscale model of interstitial fluid transport within bone tissues is proposed. Based on an asymptotic homogenization method, our modelling takes into account the physicochemical properties of bone tissue. Thanks to this multiphysical approach, the transport of nutrients and waste between the blood vessels and the bone cells can be quantified to better understand the mechanotransduction of bone remodelling. In particular, it is shown that the electrochemical tortuosity may have stronger implications in the mass transport within the bone than the purely morphological one.
Collapse
Affiliation(s)
- T Lemaire
- Université Paris Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 61 Avenue du Général de Gaulle, 94010 Créteil, France
| | | | | | | |
Collapse
|
7
|
Shenoy A, Chakraborty J, Chakraborty S. Influence of streaming potential on pulsatile pressure-gradient driven flow through an annulus. Electrophoresis 2013. [DOI: 10.1002/elps.201200502] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Anish Shenoy
- Mechanical Engineering Department; Indian Institute of Technology Kharagpur; Kharagpur; India
| | - Jeevanjyoti Chakraborty
- Advanced Technology Development Centre; Indian Institute of Technology Kharagpur; Kharagpur; India
| | | |
Collapse
|
8
|
Kaiser J, Lemaire T, Naili S, Sansalone V, Komarova S. Do calcium fluxes within cortical bone affect osteocyte mechanosensitivity? J Theor Biol 2012; 303:75-86. [DOI: 10.1016/j.jtbi.2012.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 01/10/2012] [Accepted: 03/01/2012] [Indexed: 01/15/2023]
|
9
|
Lemaire T, Lemonnier S, Naili S. On the paradoxical determinations of the lacuno-canalicular permeability of bone. Biomech Model Mechanobiol 2011; 11:933-46. [DOI: 10.1007/s10237-011-0363-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 12/08/2011] [Indexed: 11/28/2022]
|
10
|
Lemaire T, Kaiser J, Sansalone V, Rohan E, Naili S. What is the nature of bone in vivoelectricity? Comput Methods Biomech Biomed Engin 2011. [DOI: 10.1080/10255842.2011.593938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
11
|
Lemaire T, Capiez-Lernout E, Kaiser J, Naili S, Sansalone V. What is the importance of multiphysical phenomena in bone remodelling signals expression? A multiscale perspective. J Mech Behav Biomed Mater 2011; 4:909-20. [DOI: 10.1016/j.jmbbm.2011.03.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 03/01/2011] [Accepted: 03/02/2011] [Indexed: 11/16/2022]
|
12
|
Rieger R, Hambli R, Jennane R. Modeling of biological doses and mechanical effects on bone transduction. J Theor Biol 2011; 274:36-42. [PMID: 21219909 DOI: 10.1016/j.jtbi.2011.01.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 01/04/2011] [Accepted: 01/04/2011] [Indexed: 01/02/2023]
|
13
|
Lemaire T, Capiez-Lernout E, Kaiser J, Naili S, Rohan E, Sansalone V. A Multiscale Theoretical Investigation of Electric Measurements in Living Bone. Bull Math Biol 2011; 73:2649-77. [DOI: 10.1007/s11538-011-9641-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 02/03/2011] [Indexed: 11/29/2022]
|
14
|
Physiologically based mathematical model of transduction of mechanobiological signals by osteocytes. Biomech Model Mechanobiol 2011; 11:83-93. [DOI: 10.1007/s10237-011-0294-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 02/02/2011] [Indexed: 10/18/2022]
|
15
|
Rieger R, Hambli R, Jennane R. A mechanobiological transduction model for bone remodelling. Comput Methods Biomech Biomed Engin 2010. [DOI: 10.1080/10255842.2010.495596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
16
|
Lemaire T, Naili S, Sansalone V. Multiphysical modelling of fluid transport through osteo-articular media. AN ACAD BRAS CIENC 2010; 82:127-44. [DOI: 10.1590/s0001-37652010000100011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Accepted: 11/05/2008] [Indexed: 11/22/2022] Open
Abstract
In this study, a multiphysical description of fluid transport through osteo-articular porous media is presented. Adapted from the model of Moyne and Murad, which is intended to describe clayey materials behaviour, this multiscale modelling allows for the derivation of the macroscopic response of the tissue from microscopical information. First the model is described. At the pore scale, electrohydrodynamics equations governing the electrolyte movement are coupled with local electrostatics (Gauss-Poisson equation), and ionic transport equations. Using a change of variables and an asymptotic expansion method, the macroscopic description is carried out. Results of this model are used to show the importance of couplings effects on the mechanotransduction of compact bone remodelling.
Collapse
|
17
|
Zhou X, Novotny JE, Wang L. Modeling fluorescence recovery after photobleaching in loaded bone: potential applications in measuring fluid and solute transport in the osteocytic lacunar-canalicular system. Ann Biomed Eng 2008; 36:1961-77. [PMID: 18810639 PMCID: PMC2728429 DOI: 10.1007/s10439-008-9566-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Accepted: 09/10/2008] [Indexed: 10/21/2022]
Abstract
Solute transport through the bone lacunar-canalicular system is essential for osteocyte viability and function, and it can be measured using fluorescence recovery after photobleaching (FRAP). The mathematical model developed here aims to analyze solute transport during FRAP in mechanically loaded bone. Combining both whole bone-level poroelasticity and cellular-level solute transport, we found that load-induced solute transport during FRAP is characterized by an exponential recovery rate, which is determined by the dimensionless Strouhal (St) number that characterizes the oscillation effects over the mean flows, and that significant transport occurs only for St values below a threshold, when the solute stroke displacement exceeds the distance between the source and sink (the canalicular length). This threshold mechanism explains the general flow behaviors such as increasing transport with increasing magnitude and decreasing frequency. Mechanical loading is predicted to enhance transport of all tracers relative to diffusion, with the greatest enhancement for medium-sized tracers and less enhancement for small and large tracers. This study provides guidelines for future FRAP experiments, based on which the model can be used to quantify bone permeability, solute-matrix interaction, and flow velocities. These studies should provide insights into bone adaptation and metabolism, and help to treat various bone diseases and conditions.
Collapse
Affiliation(s)
- Xiaozhou Zhou
- Center for Biomedical Engineering Research, Department of Mechanical Engineering, University of Delaware, Newark, DE 19716
| | - John E. Novotny
- Center for Biomedical Engineering Research, Department of Mechanical Engineering, University of Delaware, Newark, DE 19716
| | - Liyun Wang
- Center for Biomedical Engineering Research, Department of Mechanical Engineering, University of Delaware, Newark, DE 19716
| |
Collapse
|
18
|
Lemaire T, Naïli S, Rémond A. Study of the influence of fibrous pericellular matrix in the cortical interstitial fluid movement with hydroelectrochemical effects. J Biomech Eng 2008; 130:011001. [PMID: 18298177 DOI: 10.1115/1.2838025] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Fluid flow within cortical bone tissue is modeled through an upscaling approach of a local description of the fluid movement. At the pore scale, the coupled phenomena (Poiseuille effect, osmosis, and electro-osmosis) governing the interstitial fluid movement are considered. Thus, actions of electro-osmotic and osmotic motions, in addition to the classical Poiseuille flow, are studied at the canaliculus scale by deriving a coupled Darcy law. The addition of a Brinkman-like term in this macroscopic result helps us to take into account the influence of the pericellular matrix on the coupled transport phenomena. At the canaliculus scale, the general trends that can be drawn from this study are as follows: (i) The presence of the fibrous matrix tends to reduce the fluid flow considerably; (ii) the role of osmotic and electro-osmotic effects is no longer negligible for dense fibrous media.
Collapse
Affiliation(s)
- Thibault Lemaire
- Laboratoire De Mécanique Physique, CNRS UMR 7052 B2OA, Faculté Des Sciences et Technologie, Université Paris XII, Val De Marne, Créteil Cédex, France.
| | | | | |
Collapse
|