1
|
Aharoni S, Rittel D, Shemtov-Yona K. Factual observations of dynamic bone crushing. Sci Rep 2024; 14:25597. [PMID: 39462125 PMCID: PMC11513972 DOI: 10.1038/s41598-024-77717-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/24/2024] [Indexed: 10/28/2024] Open
Abstract
Dynamic bone-crushing, exemplified by the pig bone rib, is characterized thermo-mechanically in relation to the bone's microstructural characteristics. The cortical bone's dominant role consists of shielding the trabecular component by resisting deformation, sustaining high load levels, and ultimately cracking. Here we present a qualitative factual study to show that this behavior is the absolute opposite of its quasi-static counterpart in which the trabecular bone was found to play the dominant role. Using infrared thermography, we observed for the first time a significant localized temperature rise of up to 11 degrees Celsius in both cortical and trabecular damaging regions. Such observations call for additional clinically oriented research. Such a high contrast between static and dynamic failure mechanisms was not reported previously, and it paves the way for forensic-oriented studies in which the nature of the sustained load must be determined.
Collapse
Affiliation(s)
- Sagi Aharoni
- Faculty of Mechanical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel.
| | - Daniel Rittel
- Faculty of Mechanical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Keren Shemtov-Yona
- Faculty of Mechanical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
- Department of Oral Biology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
2
|
McPhee S, Kershaw LE, Daniel CR, Peña Fernández M, Cillán-García E, Taylor SE, Wolfram U. QCT-based computational bone strength assessment updated with MRI-derived 'hidden' microporosity. J Mech Behav Biomed Mater 2023; 147:106094. [PMID: 37741181 DOI: 10.1016/j.jmbbm.2023.106094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/10/2023] [Accepted: 08/26/2023] [Indexed: 09/25/2023]
Abstract
Microdamage accumulated through sustained periods of cyclic loading or single overloading events contributes to bone fragility through a reduction in stiffness and strength. Monitoring microdamage in vivo remains unattainable by clinical imaging modalities. As such, there are no established computational methods for clinical fracture risk assessment that account for microdamage that exists in vivo at any specific timepoint. We propose a method that combines multiple clinical imaging modalities to identify an indicative surrogate, which we term 'hidden porosity', that incorporates pre-existing bone microdamage in vivo. To do so, we use the third metacarpal bone of the equine athlete as an exemplary model for fatigue induced microdamage, which coalesces in the subchondral bone. N = 10 metacarpals were scanned by clinical quantitative computed tomography (QCT) and magnetic resonance imaging (MRI). We used a patch-based similarity method to quantify the signal intensity of a fluid sensitive MRI sequence in bone regions where microdamage coalesces. The method generated MRI-derived pseudoCT images which were then used to determine a pre-existing damage (Dpex) variable to quantify the proposed surrogate and which we incorporate into a nonlinear constitutive model for bone tissue. The minimum, median, and maximum detected Dpex of 0.059, 0.209, and 0.353 reduced material stiffness by 5.9%, 20.9%, and 35.3% as well as yield stress by 5.9%, 20.3%, and 35.3%. Limb-specific voxel-based finite element meshes were equipped with the updated material model. Lateral and medial condyles of each metacarpal were loaded to simulate physiological joint loading during gallop. The degree of detected Dpex correlated with a relative reduction in both condylar stiffness (p = 0.001, R2 > 0.74) and strength (p < 0.001, R2 > 0.80). Our results illustrate the complementary value of looking beyond clinical CT, which neglects the inclusion of microdamage due to partial volume effects. As we use clinically available imaging techniques, our results may aid research beyond the equine model on fracture risk assessment in human diseases such as osteoarthritis, bone cancer, or osteoporosis.
Collapse
Affiliation(s)
- Samuel McPhee
- School of Engineering and Physical Sciences, Institute of Mechanical, Process and Energy Engineering, Heriot-Watt University, Edinburgh, UK
| | - Lucy E Kershaw
- Centre for Cardiovascular Sciences and Edinburgh Imaging, The University of Edinburgh, Edinburgh, UK
| | - Carola R Daniel
- Royal (Dick) School of Veterinary Studies and the Roslin Institute, The University of Edinburgh, Edinburgh, UK
| | - Marta Peña Fernández
- School of Engineering and Physical Sciences, Institute of Mechanical, Process and Energy Engineering, Heriot-Watt University, Edinburgh, UK
| | | | - Sarah E Taylor
- Royal (Dick) School of Veterinary Studies and the Roslin Institute, The University of Edinburgh, Edinburgh, UK
| | - Uwe Wolfram
- School of Engineering and Physical Sciences, Institute of Mechanical, Process and Energy Engineering, Heriot-Watt University, Edinburgh, UK.
| |
Collapse
|
3
|
Chaurasiya SP, Ghosh R. A new mathematical model of compressive stress-strain behaviour of low viscosity and high viscosity bone cement with different strain rates. Med Eng Phys 2023; 117:104001. [PMID: 37331754 DOI: 10.1016/j.medengphy.2023.104001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/23/2023] [Accepted: 05/27/2023] [Indexed: 06/20/2023]
Abstract
A new mathematical model of compressive stress-strain behaviour of low viscosity (LV) and high viscosity (HV) bone cement has been proposed to capture large uniaxial deformation under constant applied strain rate by incorporating three-term power law. The modeling capacity of the proposed model has been validated using uniaxial compressive test under eight different low strain rates ranging from 1.39 × 10-4 s-1 to 3.53 × 10-2 s-1 for low viscosity and high viscosity bone cement. The well agreement between the model and experimental response suggests that the proposed model can successfully predict rate dependent deformation behavior for Poly(methyl methacrylate) (PMMA) bone cement. Additionally, the proposed model was compared with the generalized Maxwell viscoelastic model and found to be in good agreement. The comparison of compressive responses over low strain rates for LV and HV bone cement reveals their rate-dependent compressive yield stress behaviour along with a higher value of compressive yield stress of LV bone cement compared to HV bone cement. For example, at the strain rate of 1.39 × 10-4 s-1 the mean value of compressive yield stress of LV bone cement was found to be 64.46 MPa, whereas for HV bone cement it was 54.00 MPa. Moreover, the modeling of experimental compressive yield stress with the Ree-Eyring molecular theory suggests that the variation of yield stress of PMMA bone cement can be predicted using two processes Ree-Eyring theory. The proposed constitutive model might be useful to characterize large deformation behaviour with high accuracy for PMMA bone cement. Finally, both variants of PMMA bone cement also exhibit ductile-like compressive behaviour below the strain rate of 2.1 × 10-2 s-1, whereas above this threshold strain rate, brittle-like compressive failure behavior is observed.
Collapse
Affiliation(s)
- Sonalal Prasad Chaurasiya
- Biomechanics Research Laboratory, School of Mechanical and Materials Engineering, Indian Institute of Technology Mandi, Kamand, Mandi, 175075, Himachal Pradesh, India
| | - Rajesh Ghosh
- Biomechanics Research Laboratory, School of Mechanical and Materials Engineering, Indian Institute of Technology Mandi, Kamand, Mandi, 175075, Himachal Pradesh, India.
| |
Collapse
|
4
|
Wronski S, Wit A, Tarasiuk J, Lipinski P. The impact of the parameters of the constitutive model on the distribution of strain in the femoral head. Biomech Model Mechanobiol 2023; 22:739-759. [PMID: 36539625 PMCID: PMC10097789 DOI: 10.1007/s10237-022-01678-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/08/2022] [Indexed: 04/13/2023]
Abstract
The rapid spread of the finite element method has caused that it has become, among other methods, the standard tool for pre-clinical estimates of bone properties. This paper presents an application of this method for the calculation and prediction of strain and stress fields in the femoral head. The aim of the work is to study the influence of the considered anisotropy and heterogeneity of the modeled bone on the mechanical fields during a typical gait cycle. Three material models were tested with different properties of porous bone carried out in literature: a homogeneous isotropic model, a heterogeneous isotropic model, and a heterogeneous anisotropic model. In three cases studied, the elastic properties of the bone were determined basing on the Zysset-Curnier approach. The tensor of elastic constants defining the local properties of porous bone is correlated with a local porosity and a second order fabric tensor describing the bone microstructure. In the calculations, a model of the femoral head generated from high-resolution tomographic scans was used. Experimental data were drawn from publicly available database "Osteoporotic Virtual Physiological Human Project." To realistically reflect the load on the femoral head, main muscles were considered, and their contraction forces were determined based on inverse kinematics. For this purpose, the results from OpenSim packet were used. The simulations demonstrated that differences between the results predicted by these material models are significant. Only the anisotropic model allowed for the plausible distribution of stresses along the main trabecular groups. The outcomes also showed that the precise evaluation of the mechanical fields is critical in the context of bone tissue remodeling under mechanical stimulations.
Collapse
Affiliation(s)
- Sebastian Wronski
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, 30-059, Kraków, Poland.
| | - Adrian Wit
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, 30-059, Kraków, Poland
| | - Jacek Tarasiuk
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, 30-059, Kraków, Poland
| | - Pawel Lipinski
- Université de Lorraine, LEM3, 7 Rue Félix Savart, 57070, Metz, France
| |
Collapse
|
5
|
Peña Fernández M, Sasso SJ, McPhee S, Black C, Kanczler J, Tozzi G, Wolfram U. Nonlinear micro finite element models based on digital volume correlation measurements predict early microdamage in newly formed bone. J Mech Behav Biomed Mater 2022; 132:105303. [PMID: 35671669 DOI: 10.1016/j.jmbbm.2022.105303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 04/27/2022] [Accepted: 05/27/2022] [Indexed: 12/21/2022]
Abstract
Bone regeneration in critical-sized defects is a clinical challenge, with biomaterials under constant development aiming at enhancing the natural bone healing process. The delivery of bone morphogenetic proteins (BMPs) in appropriate carriers represents a promising strategy for bone defect treatment but optimisation of the spatial-temporal release is still needed for the regeneration of bone with biological, structural, and mechanical properties comparable to the native tissue. Nonlinear micro finite element (μFE) models can address some of these challenges by providing a tool able to predict the biomechanical strength and microdamage onset in newly formed bone when subjected to physiological or supraphysiological loads. Yet, these models need to be validated against experimental data. In this study, experimental local displacements in newly formed bone induced by osteoinductive biomaterials subjected to in situ X-ray computed tomography compression in the apparent elastic regime and measured using digital volume correlation (DVC) were used to validate μFE models. Displacement predictions from homogeneous linear μFE models were highly correlated to DVC-measured local displacements, while tissue heterogeneity capturing mineralisation differences showed negligible effects. Nonlinear μFE models improved the correlation and showed that tissue microdamage occurs at low apparent strains. Microdamage seemed to occur next to large cavities or in biomaterial-induced thin trabeculae, independent of the mineralisation. While localisation of plastic strain accumulation was similar, the amount of damage accumulated in these locations was slightly higher when including material heterogeneity. These results demonstrate the ability of the nonlinear μFE model to capture local microdamage in newly formed bone tissue and can be exploited to improve the current understanding of healing bone and mechanical competence. This will ultimately aid the development of BMPs delivery systems for bone defect treatment able to regenerate bone with optimal biological, mechanical, and structural properties.
Collapse
Affiliation(s)
- Marta Peña Fernández
- School of Engineering and Physical Sciences, Institute of Mechanical, Process and Energy Engineering, Heriot-Watt University, EH14 4AS, UK.
| | - Sebastian J Sasso
- School of Engineering and Physical Sciences, Institute of Mechanical, Process and Energy Engineering, Heriot-Watt University, EH14 4AS, UK
| | - Samuel McPhee
- School of Engineering and Physical Sciences, Institute of Mechanical, Process and Energy Engineering, Heriot-Watt University, EH14 4AS, UK
| | - Cameron Black
- Bone & Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Human Development & Health, Institute of Development Sciences, University of Southampton, SO16 6YD, UK
| | - Janos Kanczler
- Bone & Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Human Development & Health, Institute of Development Sciences, University of Southampton, SO16 6YD, UK
| | - Gianluca Tozzi
- Zeiss Global Centre, School of Mechanical and Design Engineering, University of Portsmouth, PO1 3DJ, UK
| | - Uwe Wolfram
- School of Engineering and Physical Sciences, Institute of Mechanical, Process and Energy Engineering, Heriot-Watt University, EH14 4AS, UK.
| |
Collapse
|
6
|
Hamandi F, Tsatalis JT, Goswami T. Retrospective Evaluation and Framework Development of Bone Anisotropic Material Behavior Compared with Elastic, Elastic-Plastic, and Hyper-Elastic Properties. Bioengineering (Basel) 2021; 9:9. [PMID: 35049718 PMCID: PMC8773132 DOI: 10.3390/bioengineering9010009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 11/17/2022] Open
Abstract
The main motivation for studying damage in bone tissue is to better understand how damage develops in the bone tissue and how it progresses. Such knowledge may help in the surgical aspects of joint replacement, fracture fixation or establishing the fracture tolerance of bones to prevent injury. Currently, there are no standards that create a realistic bone model with anisotropic material properties, although several protocols have been suggested. This study seeks to retrospectively evaluate the damage of bone tissue with respect to patient demography including age, gender, race, body mass index (BMI), height, and weight, and their role in causing fracture. Investigators believe that properties derived from CT imaging data to estimate the material properties of bone tissue provides more realistic models. Quantifying and associating damage with in vivo conditions will provide the required information to develop mathematical equations and procedures to predict the premature failure and potentially mitigate problems before they begin. Creating a realistic model for bone tissue can predict the premature failure(s), provide preliminary results before getting the surgery, and optimize the design of orthopaedic implants. A comparison was performed between the proposed model and previous efforts, where they used elastic, hyper- elastic, or elastic-plastic properties. Results showed that there was a significant difference between the anisotropic material properties of bone when compared with unrealistic previous methods. The results showed that the density is 50% higher in male subjects than female subjects. Additionally, the results showed that the density is 47.91% higher in Black subjects than Mixed subjects, 53.27% higher than Caucasian subjects and 57.41% higher than Asian. In general, race should be considered during modeling implants or suggesting therapeutic techniques.
Collapse
Affiliation(s)
- Farah Hamandi
- Department of Biomedical, Industrial, and Human Factors Engineering, Wright State University, Dayton, OH 45435, USA;
| | - James T. Tsatalis
- Department of Radiology, Orthopaedic Surgery, Miami Valley Hospital, Dayton, OH 45409, USA;
| | - Tarun Goswami
- Department of Biomedical, Industrial, and Human Factors Engineering, Wright State University, Dayton, OH 45435, USA;
- Department of Orthopedic Surgery, Sports Medicine and Rehabilitation, Wright State University, Dayton, OH 45435, USA
| |
Collapse
|
7
|
Pisano AA, Fuschi P. Limit analysis of human proximal femur. J Mech Behav Biomed Mater 2021; 124:104844. [PMID: 34601433 DOI: 10.1016/j.jmbbm.2021.104844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 09/03/2021] [Accepted: 09/15/2021] [Indexed: 10/20/2022]
Abstract
A limit analysis numerical approach oriented to predict the peak/collapse load of human proximal femur, under two different loading conditions, is presented. A yield criterion of Tsai-Hu-type, expressed in principal stress space, is used to model the orthotropic bone tissues. A simplified human femur 3D model is envisaged to carry on numerical simulation of in-vitro tests borrowed from the relevant literature and to reproduce their findings. A critical discussion, together with possible future developments, is presented.
Collapse
Affiliation(s)
- A A Pisano
- University Mediterranea of Reggio Calabria, Via dell'Universitá 25, I-89124 Reggio Calabria, Italy.
| | - P Fuschi
- University Mediterranea of Reggio Calabria, Via dell'Universitá 25, I-89124 Reggio Calabria, Italy
| |
Collapse
|
8
|
Ovesy M, Aeschlimann M, Zysset PK. Explicit finite element analysis can predict the mechanical response of conical implant press-fit in homogenized trabecular bone. J Biomech 2020; 107:109844. [DOI: 10.1016/j.jbiomech.2020.109844] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 04/30/2020] [Accepted: 05/08/2020] [Indexed: 02/09/2023]
|
9
|
Length scale parameter of single trabecula in cancellous bone. Biomech Model Mechanobiol 2020; 19:1917-1923. [PMID: 32108271 DOI: 10.1007/s10237-020-01316-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/18/2020] [Indexed: 12/23/2022]
Abstract
In this paper, the material length scale parameter of the modified couple stress theory for trabecular bones is studied. For this reason, experimental data for the buckling of single wet and dry trabeculae from the subchondral region of the human medial tibial plateau are used from the literature. A material length scale parameter is extracted using the modified couple stress theory-based buckling relation and the experimental results. This parameter can capture the size-dependent behavior of trabeculae and can be beneficial for micro-mechanical investigation of trabecular bones. In addition, this paper proposes a size-dependent length scale parameter for trabeculae to estimate the buckling behaviors of dry and wet trabeculae, more accurately. Therefore, this paper confirms that the softening (weakening) effects of the modified couple stress theory and size-dependent behavior of the material length scale parameter can be considered for some special cases, and additionally, a correct value for the length scale parameter of the trabecula is revealed.
Collapse
|
10
|
Prediction of insertion torque and stiffness of a dental implant in bovine trabecular bone using explicit micro-finite element analysis. J Mech Behav Biomed Mater 2019; 98:301-310. [DOI: 10.1016/j.jmbbm.2019.06.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/21/2019] [Accepted: 06/26/2019] [Indexed: 01/01/2023]
|
11
|
Evaluation of the Implicit Gradient-Enhanced Regularization of a Damage-Plasticity Rock Model. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8061004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Abstract
The mechanical properties of bone are fundamental to the ability of our skeletons to support movement and to provide protection to our vital organs. As such, deterioration in mechanical behavior with aging and/or diseases such as osteoporosis and diabetes can have profound consequences for individuals' quality of life. This article reviews current knowledge of the basic mechanical behavior of bone at length scales ranging from hundreds of nanometers to tens of centimeters. We present the basic tenets of bone mechanics and connect them to some of the arcs of research that have brought the field to recent advances. We also discuss cortical bone, trabecular bone, and whole bones, as well as multiple aspects of material behavior, including elasticity, yield, fracture, fatigue, and damage. We describe the roles of bone quantity (e.g., density, porosity) and bone quality (e.g., cross-linking, protein composition), along with several avenues of future research.
Collapse
Affiliation(s)
- Elise F Morgan
- Orthopaedic and Developmental Biomechanics Laboratory, Department of Mechanical Engineering, Boston University, Boston, Massachusetts 02215, USA;
| | - Ginu U Unnikrisnan
- Orthopaedic and Developmental Biomechanics Laboratory, Department of Mechanical Engineering, Boston University, Boston, Massachusetts 02215, USA;
| | - Amira I Hussein
- Orthopaedic and Developmental Biomechanics Laboratory, Department of Mechanical Engineering, Boston University, Boston, Massachusetts 02215, USA;
| |
Collapse
|
13
|
A nonlinear homogenized finite element analysis of the primary stability of the bone–implant interface. Biomech Model Mechanobiol 2018; 17:1471-1480. [DOI: 10.1007/s10237-018-1038-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 05/22/2018] [Indexed: 10/14/2022]
|
14
|
Haider IT, Goldak J, Frei H. Femoral fracture load and fracture pattern is accurately predicted using a gradient-enhanced quasi-brittle finite element model. Med Eng Phys 2018; 55:1-8. [DOI: 10.1016/j.medengphy.2018.02.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 11/21/2017] [Accepted: 02/25/2018] [Indexed: 10/17/2022]
|
15
|
Macrodamage Accumulation Model for a Human Femur. Appl Bionics Biomech 2017; 2017:4539178. [PMID: 28951659 PMCID: PMC5603112 DOI: 10.1155/2017/4539178] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 06/19/2017] [Indexed: 11/18/2022] Open
Abstract
The objective of this study was to more fully understand the mechanical behavior of bone tissue that is important to find an alternative material to be used as an implant and to develop an accurate model to predict the fracture of the bone. Predicting and preventing bone failure is an important area in orthopaedics. In this paper, the macrodamage accumulation models in the bone tissue have been investigated. Phenomenological models for bone damage have been discussed in detail. In addition, 3D finite element model of the femur prepared from imaging data with both cortical and trabecular structures is delineated using MIMICS and ANSYS® and simulated as a composite structure. The damage accumulation occurring during cyclic loading was analyzed for fatigue scenario. We found that the damage accumulates sooner in the multiaxial than in the uniaxial loading condition for the same number of cycles, and the failure starts in the cortical bone. The damage accumulation behavior seems to follow a three-stage growth: a primary phase, a secondary phase of damage growth marked by linear damage growth, and a tertiary phase that leads to failure. Finally, the stiffness of the composite bone comprising the cortical and trabecular bone was significantly different as expected.
Collapse
|
16
|
A new constitutive model for simulation of softening, plateau, and densification phenomena for trabecular bone under compression. J Mech Behav Biomed Mater 2017; 65:213-223. [DOI: 10.1016/j.jmbbm.2016.08.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 07/07/2016] [Accepted: 08/19/2016] [Indexed: 11/18/2022]
|
17
|
Mirzaali MJ, Bürki A, Schwiedrzik J, Zysset PK, Wolfram U. Continuum damage interactions between tension and compression in osteonal bone. J Mech Behav Biomed Mater 2015; 49:355-69. [DOI: 10.1016/j.jmbbm.2015.05.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 04/18/2015] [Accepted: 05/08/2015] [Indexed: 11/17/2022]
|
18
|
Lekadir K, Noble C, Hazrati-Marangalou J, Hoogendoorn C, van Rietbergen B, Taylor ZA, Frangi AF. Patient-Specific Biomechanical Modeling of Bone Strength Using Statistically-Derived Fabric Tensors. Ann Biomed Eng 2015; 44:234-46. [DOI: 10.1007/s10439-015-1432-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 08/18/2015] [Indexed: 01/23/2023]
|
19
|
Hosseini HS, Clouthier AL, Zysset PK. Experimental validation of finite element analysis of human vertebral collapse under large compressive strains. J Biomech Eng 2014; 136:1812213. [PMID: 24384581 DOI: 10.1115/1.4026409] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 01/02/2014] [Indexed: 11/08/2022]
Abstract
Osteoporosis-related vertebral fractures represent a major health problem in elderly populations. Such fractures can often only be diagnosed after a substantial deformation history of the vertebral body. Therefore, it remains a challenge for clinicians to distinguish between stable and progressive potentially harmful fractures. Accordingly, novel criteria for selection of the appropriate conservative or surgical treatment are urgently needed. Computer tomography-based finite element analysis is an increasingly accepted method to predict the quasi-static vertebral strength and to follow up this small strain property longitudinally in time. A recent development in constitutive modeling allows us to simulate strain localization and densification in trabecular bone under large compressive strains without mesh dependence. The aim of this work was to validate this recently developed constitutive model of trabecular bone for the prediction of strain localization and densification in the human vertebral body subjected to large compressive deformation. A custom-made stepwise loading device mounted in a high resolution peripheral computer tomography system was used to describe the progressive collapse of 13 human vertebrae under axial compression. Continuum finite element analyses of the 13 compression tests were realized and the zones of high volumetric strain were compared with the experiments. A fair qualitative correspondence of the strain localization zone between the experiment and finite element analysis was achieved in 9 out of 13 tests and significant correlations of the volumetric strains were obtained throughout the range of applied axial compression. Interestingly, the stepwise propagating localization zones in trabecular bone converged to the buckling locations in the cortical shell. While the adopted continuum finite element approach still suffers from several limitations, these encouraging preliminary results towards the prediction of extended vertebral collapse may help in assessing fracture stability in future work.
Collapse
|
20
|
A novel approach to estimate trabecular bone anisotropy from stress tensors. Biomech Model Mechanobiol 2014; 14:39-48. [DOI: 10.1007/s10237-014-0584-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 04/06/2014] [Indexed: 10/25/2022]
|
21
|
Hazrati Marangalou J, Eckstein F, Kuhn V, Ito K, Cataldi M, Taddei F, van Rietbergen B. Locally measured microstructural parameters are better associated with vertebral strength than whole bone density. Osteoporos Int 2014; 25:1285-96. [PMID: 24306231 DOI: 10.1007/s00198-013-2591-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 11/25/2013] [Indexed: 01/30/2023]
Abstract
UNLABELLED Whole vertebrae areal and volumetric bone mineral density (BMD) measurements are not ideal predictors of vertebral fractures. We introduce a technique which enables quantification of bone microstructural parameters at precisely defined anatomical locations. Results show that local assessment of bone volume fraction at the optimal location can substantially improve the prediction of vertebral strength. INTRODUCTION Whole vertebrae areal and volumetric BMD measurements are not ideal predictors of vertebral osteoporotic fractures. Recent studies have shown that sampling bone microstructural parameters in smaller regions may permit better predictions. In such studies, however, the sampling location is described only in general anatomical terms. Here, we introduce a technique that enables the quantification of bone volume fraction and microstructural parameters at precisely defined anatomical locations. Specific goals of this study were to investigate at what anatomical location within the vertebrae local bone volume fraction best predicts vertebral-body strength, whether this prediction can be improved by adding microstructural parameters and to explore if this approach could better predict vertebral-body strength than whole bone volume fraction and finite element (FE) analyses. METHODS Eighteen T12 vertebrae were scanned in a micro-computed tomography (CT) system and FE meshes were made using a mesh-morphing tool. For each element, bone microstructural parameters were measured and correlated with vertebral compressive strength as measured experimentally. Whole bone volume fraction and FE-predicted vertebral strength were also compared to the experimental measurements. RESULTS A significant association between local bone volume fraction measured at a specific central region and vertebral-body strength was found that could explain up to 90% of the variation. When including all microstructural parameters in the regression, the predictive value of local measurements could be increased to 98%. Whole bone volume fraction could explain only 64% and FE analyses 76% of the variation in bone strength. CONCLUSIONS A local assessment of volume fraction at the optimal location can substantially improve the prediction of bone strength. Local assessment of other microstructural parameters may further improve this prediction but is not clinically feasible using current technology.
Collapse
Affiliation(s)
- J Hazrati Marangalou
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
22
|
Zhang N, Magland JF, Rajapakse CS, Lam SB, Wehrli FW. Assessment of trabecular bone yield and post-yield behavior from high-resolution MRI-based nonlinear finite element analysis at the distal radius of premenopausal and postmenopausal women susceptible to osteoporosis. Acad Radiol 2013; 20:1584-91. [PMID: 24200486 DOI: 10.1016/j.acra.2013.09.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 08/12/2013] [Accepted: 09/04/2013] [Indexed: 11/15/2022]
Abstract
RATIONALE AND OBJECTIVES To assess the performance of a nonlinear microfinite element model on predicting trabecular bone yield and post-yield behavior based on high-resolution in vivo magnetic resonance images via the serial reproducibility. MATERIALS AND METHODS The nonlinear model captures material nonlinearity by iteratively adjusting tissue-level modulus based on tissue-level effective strain. It enables simulations of trabecular bone yield and post-yield behavior from micro magnetic resonance images at in vivo resolution by solving a series of nonlinear systems via an iterative algorithm on a desktop computer. Measures of mechanical competence (yield strain/strength, ultimate strain/strength, modulus of resilience, and toughness) were estimated at the distal radius of premenopausal and postmenopausal women (N = 20, age range 50-75) in whom osteoporotic fractures typically occur. Each subject underwent three scans (20.2 ± 14.5 days). Serial reproducibility was evaluated via coefficient of variation (CV) and intraclass correlation coefficient (ICC). RESULTS Nonlinear simulations were completed in an average of 14 minutes per three-dimensional image data set involving analysis of 61 strain levels. The predicted yield strain/strength, ultimate strain/strength, modulus of resilience, and toughness had a mean value of 0.78%, 3.09 MPa, 1.35%, 3.48 MPa, 14.30 kPa, and 32.66 kPa, respectively, covering a substantial range by a factor of up to 4. Intraclass correlation coefficient ranged from 0.986 to 0.994 (average 0.991); CV ranged from 1.01% to 5.62% (average 3.6%), with yield strain and toughness having the lowest and highest CV values, respectively. CONCLUSIONS The data suggest that the yield and post-yield parameters have adequate reproducibility to evaluate treatment effects in interventional studies within short follow-up periods.
Collapse
Affiliation(s)
- Ning Zhang
- Laboratory for Structural NMR Imaging, Department of Radiology, University of Pennsylvania Medical Center, 3400 Spruce St, Philadelphia, PA 19104
| | | | | | | | | |
Collapse
|
23
|
Hazrati Marangalou J, Ito K, Cataldi M, Taddei F, van Rietbergen B. A novel approach to estimate trabecular bone anisotropy using a database approach. J Biomech 2013; 46:2356-62. [PMID: 23972430 DOI: 10.1016/j.jbiomech.2013.07.042] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Revised: 07/26/2013] [Accepted: 07/31/2013] [Indexed: 11/15/2022]
Abstract
Continuum finite element (FE) models of bones have become a standard pre-clinical tool to estimate bone strength. These models are usually based on clinical CT scans and material properties assigned are chosen as isotropic based only on the density distribution. It has been shown, however, that trabecular bone elastic behavior is best described as orthotropic. Unfortunately, the use of orthotropic models in FE analysis derived from CT scans is hampered by the fact that the measurement of a trabecular orientation (fabric) is not possible from clinical CT images due to the low resolution of such images. In this study, we explore the concept of using a database (DB) of high-resolution bone models to derive the fabric information that is missing in clinical images. The goal of this study was to investigate if models with fabric derived from a relatively small database can already produce more accurate results than isotropic models. A DB of 33 human proximal femurs was generated from micro-CT scans with a nominal isotropic resolution of 82 µm. Continuum FE models were generated from the images using a pre-defined mesh template in combination with an iso-anatomic mesh morphing tool. Each element within the mesh template is at a specific anatomical location. For each element within the cancellous bone, a spherical region around the element centroid with a radius of 2mm was defined. Bone volume fraction and the mean-intercept-length fabric tensor were analyzed for that region. Ten femurs were used as test cases. For each test femur, four different models were generated: (1) an orthotropic model based on micro-CT fabric measurements (gold standard), (2) an orthotropic model based on the fabric derived from the best-matched database model, (3) an isotropic-I model in which the fabric tensor was set to the identity tensor, and (4) a second isotropic-II model with its total bone stiffness fitted to the gold standard. An elastic-plastic damage model was used to simulate failure and post failure behavior during a fall to the side. The results show that all models produce a similar stress distribution. However, compared to the gold standard, both isotropic-I and II models underestimated the stress/damage distributions significantly. We found no significant difference between DB-derived and gold standard models. Compared to the gold standard, the isotropic-I models further underestimated whole bone stiffness by 26.3% and ultimate load by 14.5%, while these differences for the DB-derived orthotropic models were only 4.9% and 3.1% respectively. The results indicate that the concept of using a DB to estimate patient-specific anisotropic material properties can considerably improve the results. We expect that this approach can lead to more accurate results in particular for cases where bone anisotropy plays an important role, such as in osteoporotic patients and around implants.
Collapse
Affiliation(s)
- Javad Hazrati Marangalou
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | | | | | | | | |
Collapse
|
24
|
Carretta R, Stüssi E, Müller R, Lorenzetti S. Within subject heterogeneity in tissue-level post-yield mechanical and material properties in human trabecular bone. J Mech Behav Biomed Mater 2013; 24:64-73. [DOI: 10.1016/j.jmbbm.2013.04.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Revised: 04/09/2013] [Accepted: 04/11/2013] [Indexed: 11/27/2022]
|
25
|
Carretta R, Lorenzetti S, Müller R. Towards patient-specific material modeling of trabecular bone post-yield behavior. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2013; 29:250-272. [PMID: 23386574 DOI: 10.1002/cnm.2516] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 08/21/2012] [Accepted: 09/04/2012] [Indexed: 06/01/2023]
Abstract
Bone diseases such as osteoporosis are one of the main causes of bone fracture and often result in hospitalization and long recovery periods. Researchers are aiming to develop new tools that consider the multiple determinants acting at the different scales of bone, and which can be used to clinically estimate patient-specific fracture risk and also assess the efficacy of new therapies. The main step towards this goal is a deep understanding of the bone organ, and is achieved by modeling the complexity of the structure and the high variability of the mechanical outcome. This review uses a hierarchical approach to evaluate bone mechanics at the macroscale, microscale, and nanoscale levels and the interactions between scales. The first section analyzes the experimental evidence of bone mechanics in the elastic and inelastic regions, microdamage generation, and post-yield toughening mechanisms from the organ level to the ultrastructural level. On the basis of these observations, the second section provides an overview of the constitutive models available to describe bone mechanics and predict patient-specific outcomes. Overall, the role of the hierarchical structure of bone and the interplay between each level is highlighted, and their effect is evaluated in terms of modeling biological variability and patient specificity.
Collapse
|
26
|
Hosseini HS, Pahr DH, Zysset PK. Modeling and experimental validation of trabecular bone damage, softening and densification under large compressive strains. J Mech Behav Biomed Mater 2012; 15:93-102. [DOI: 10.1016/j.jmbbm.2012.06.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 06/04/2012] [Accepted: 06/11/2012] [Indexed: 01/29/2023]
|
27
|
An experimental and computational investigation of the post-yield behaviour of trabecular bone during vertebral device subsidence. Biomech Model Mechanobiol 2012; 12:685-703. [DOI: 10.1007/s10237-012-0434-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 08/18/2012] [Indexed: 10/27/2022]
|
28
|
Kelly N, McGarry JP. Experimental and numerical characterisation of the elasto-plastic properties of bovine trabecular bone and a trabecular bone analogue. J Mech Behav Biomed Mater 2012; 9:184-97. [DOI: 10.1016/j.jmbbm.2011.11.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 11/23/2011] [Accepted: 11/27/2011] [Indexed: 10/14/2022]
|
29
|
Failure modelling of trabecular bone using a non-linear combined damage and fracture voxel finite element approach. Biomech Model Mechanobiol 2012; 12:225-41. [DOI: 10.1007/s10237-012-0394-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2011] [Accepted: 03/30/2012] [Indexed: 11/27/2022]
|
30
|
An anisotropic elastic-viscoplastic damage model for bone tissue. Biomech Model Mechanobiol 2012; 12:201-13. [DOI: 10.1007/s10237-012-0392-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 03/21/2012] [Indexed: 10/28/2022]
|
31
|
Mengoni M, Voide R, de Bien C, Freichels H, Jérôme C, Léonard A, Toye D, Müller R, van Lenthe GH, Ponthot JP. A non-linear homogeneous model for bone-like materials under compressive load. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2012; 28:273-287. [PMID: 25099330 DOI: 10.1002/cnm.1473] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 07/15/2011] [Accepted: 09/01/2011] [Indexed: 06/03/2023]
Abstract
Finite element (FE) models accurately compute the mechanical response of bone and bone-like materials when the models include their detailed microstructure. In order to simulate non-linear behavior, which currently is only feasible at the expense of extremely high computational costs, coarser models can be used if the local morphology has been linked to the apparent mechanical behavior. The aim of this paper is to implement and validate such a constitutive law. This law is able to capture the non-linear structural behavior of bone-like materials through the use of fabric tensors. It also allows for irreversible strains using an elastoplastic material model incorporating hardening. These features are expressed in a constitutive law based on the anisotropic continuum damage theory coupled with isotropic elastoplasticity in a finite strain framework. This material model was implemented into metafor (LTAS-MNNL, University of Liège, Belgium), a non-linear FE software. The implementation was validated against experimental data of cylindrical samples subjected to compression. Three materials with bone-like microstructure were tested: aluminum foams of variable density (ERG, Oakland, CA, USA), polylactic acid foam (CERM, University of Liège, Liège, Belgium), and cancellous bone tissue of a deer antler (Faculty of Veterinary Medicine, University of Liège, Liège, Belgium).
Collapse
Affiliation(s)
- M Mengoni
- Department of Aerospaceand Mechanics, LTAS-Non Linear Computational Mechanics, University of Liège, Liège, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|