1
|
Mostafazadeh N, Resnick A, Young YN, Peng Z. Microstructure-based modeling of primary cilia mechanics. Cytoskeleton (Hoboken) 2024; 81:369-381. [PMID: 38676536 DOI: 10.1002/cm.21860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/29/2024]
Abstract
A primary cilium, made of nine microtubule doublets enclosed in a cilium membrane, is a mechanosensing organelle that bends under an external mechanical load and sends an intracellular signal through transmembrane proteins activated by cilium bending. The nine microtubule doublets are the main load-bearing structural component, while the transmembrane proteins on the cilium membrane are the main sensing component. No distinction was made between these two components in all existing models, where the stress calculated from the structural component (nine microtubule doublets) was used to explain the sensing location, which may be totally misleading. For the first time, we developed a microstructure-based primary cilium model by considering these two components separately. First, we refined the analytical solution of bending an orthotropic cylindrical shell for individual microtubule, and obtained excellent agreement between finite element simulations and the theoretical predictions of a microtubule bending as a validation of the structural component in the model. Second, by integrating the cilium membrane with nine microtubule doublets and simulating the tip-anchored optical tweezer experiment on our computational model, we found that the microtubule doublets may twist significantly as the whole cilium bends. Third, besides being cilium-length-dependent, we found the mechanical properties of the cilium are also highly deformation-dependent. More important, we found that the cilium membrane near the base is not under pure in-plane tension or compression as previously thought, but has significant local bending stress. This challenges the traditional model of cilium mechanosensing, indicating that transmembrane proteins may be activated more by membrane curvature than membrane stretching. Finally, we incorporated imaging data of primary cilia into our microstructure-based cilium model, and found that comparing to the ideal model with uniform microtubule length, the imaging-informed model shows the nine microtubule doublets interact more evenly with the cilium membrane, and their contact locations can cause even higher bending curvature in the cilium membrane than near the base.
Collapse
Affiliation(s)
- Nima Mostafazadeh
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, Illinois, USA
| | - Andrew Resnick
- Department of Physics and Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, Ohio, USA
| | - Y-N Young
- Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, New Jersey, USA
| | - Zhangli Peng
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, Illinois, USA
| |
Collapse
|
2
|
Mostafazadeh N, Resnick A, Young YN, Peng Z. Microstructure-Based Modeling of Primary Cilia Mechanics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.14.549117. [PMID: 37503231 PMCID: PMC10370030 DOI: 10.1101/2023.07.14.549117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
A primary cilium, made of nine microtubule doublets enclosed in a cilium membrane, is a mechanosensing organelle that bends under an external mechanical load and sends an intracellular signal through transmembrane proteins activated by cilium bending. The nine microtubule doublets are the main load-bearing structural component, while the transmembrane proteins on the cilium membrane are the main sensing component. No distinction was made between these two components in all existing models, where the stress calculated from the structural component (nine microtubule doublets) was used to explain the sensing location, which may be totally misleading. For the first time, we developed a microstructure-based primary cilium model by considering these two components separately. First, we refined the analytical solution of bending an orthotropic cylindrical shell for individual microtubule, and obtained excellent agreement between finite element simulations and the theoretical predictions of a microtubule bending as a validation of the structural component in the model. Second, by integrating the cilium membrane with nine microtubule doublets, we found that the microtubule doublets may twist significantly as the whole cilium bends. Third, besides being cilium-length-dependent, we found the mechanical properties of the cilium are also highly deformation-dependent. More important, we found that the cilium membrane near the base is not under pure in-plane tension or compression as previously thought, but has significant local bending stress. This challenges the traditional model of cilium mechanosensing, indicating that transmembrane proteins may be activated more by membrane curvature than membrane stretching. Finally, we incorporated imaging data of primary cilia into our microstructure-based cilium model, and found that comparing to the ideal model with uniform microtubule length, the imaging-informed model shows the nine microtubule doublets interact more evenly with the cilium membrane, and their contact locations can cause even higher bending curvature in the cilium membrane than near the base. SIGNIFICANCE Factors regulating the mechanical response of a primary cilium to fluid flow remain unclear. Modeling the microtubule doublet as a composite of two orthotropic shells and the ciliary axoneme as an elastic shell enclosing nine such microtubule doublets, we found that the length distribution of microtubule doublets (inferred from cryogenic electron tomography images) is the primary determining factor in the bending stiffness of primary cilia, rather than just the ciliary length. This implies ciliary-associated transmembrane proteins may be activated by membrane curvature changes rather than just membrane stretching. These insights challenge the traditional view of ciliary mechanosensation and expands our understanding of the different ways in which cells perceive and respond to mechanical stimuli.
Collapse
|
3
|
Cartwright JHE. Quantum noise may limit the mechanosensory sensitivity of cilia in the left-right organizer of the vertebrate bodyplan. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 180-181:83-86. [PMID: 37137357 DOI: 10.1016/j.pbiomolbio.2023.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/19/2023] [Accepted: 04/26/2023] [Indexed: 05/05/2023]
Abstract
Could nature be harnessing quantum mechanics in cilia to optimize the sensitivity of the mechanism of left-right symmetry breaking during development in vertebrates? I evaluate whether mechanosensing - i.e., the detection of a left-right asymmetric signal through mechanical stimulation of sensory cilia, as opposed to biochemical signalling - might be functioning in the embryonic left-right organizer of the vertebrate bodyplan through quantum mechanics. I conclude that there is a possible role for quantum biology in mechanosensing in cilia. The system may not be limited by classical thermal noise, but instead by quantum noise, with an amplification process providing active cooling.
Collapse
Affiliation(s)
- Julyan H E Cartwright
- Instituto Andaluz de Ciencias de la Tierra, CSIC-Universidad de Granada, 18100, Armilla, Granada, Spain; Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, 18071, Granada, Spain.
| |
Collapse
|
4
|
Zekaj N, Ryan SD, Resnick A. Fluid-structure interaction modelling of neighboring tubes with primary cilium analysis. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:3677-3699. [PMID: 36899599 DOI: 10.3934/mbe.2023172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
We have developed a numerical model of two osculating cylindrical elastic renal tubules to investigate the impact of neighboring tubules on the stress applied to a primary cilium. We hypothesize that the stress at the base of the primary cilium will depend on the mechanical coupling of the tubules due to local constrained motion of the tubule wall. The objective of this work was to determine the in-plane stresses of a primary cilium attached to the inner wall of one renal tubule subject to the applied pulsatile flow, with a neighboring renal tube filled with stagnant fluid in close proximity to the primary tubule. We used the commercial software COMSOLⓇ to model the fluid-structure interaction of the applied flow and tubule wall, and we applied a boundary load to the face of the primary cilium during this simulation to produces a stress at its base. We confirm our hypothesis by observing that on average the in-plane stresses are greater at the base of the cilium when there is a neighboring renal tube versus if there is no neighboring tube at all. In combination with the hypothesized function of a cilium as a biological fluid flow sensor, these results indicate that flow signaling may also depend on how the tubule wall is constrained by neighboring tubules. Our results may be limited in their interpretation due to the simplified nature of our model geometry, and further improvements to the model may potentially lead to the design of future experiments.
Collapse
Affiliation(s)
- Nerion Zekaj
- Department of Mathematics, University of North Carolina at Chapel Hill, Chapel Hill 27599, USA
| | - Shawn D Ryan
- Department of Mathematics and Statistics, Cleveland State University, Cleveland OH 44115, USA
| | - Andrew Resnick
- Department of Physics, Cleveland State University, Cleveland OH 44115, USA
- Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland OH 44115, USA
| |
Collapse
|
5
|
Morleo M, Vieira HL, Pennekamp P, Palma A, Bento-Lopes L, Omran H, Lopes SS, Barral DC, Franco B. Crosstalk between cilia and autophagy: implication for human diseases. Autophagy 2023; 19:24-43. [PMID: 35613303 PMCID: PMC9809938 DOI: 10.1080/15548627.2022.2067383] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Macroautophagy/autophagy is a self-degradative process necessary for cells to maintain their energy balance during development and in response to nutrient deprivation. Autophagic processes are tightly regulated and have been found to be dysfunctional in several pathologies. Increasing experimental evidence points to the existence of an interplay between autophagy and cilia. Cilia are microtubule-based organelles protruding from the cell surface of mammalian cells that perform a variety of motile and sensory functions and, when dysfunctional, result in disorders known as ciliopathies. Indeed, selective autophagic degradation of ciliary proteins has been shown to control ciliogenesis and, conversely, cilia have been reported to control autophagy. Moreover, a growing number of players such as lysosomal and mitochondrial proteins are emerging as actors of the cilia-autophagy interplay. However, some of the published data on the cilia-autophagy axis are contradictory and indicate that we are just starting to understand the underlying molecular mechanisms. In this review, the current knowledge about this axis and challenges are discussed, as well as the implication for ciliopathies and autophagy-associated disorders.
Collapse
Affiliation(s)
- Manuela Morleo
- Telethon Institute of Genetics and Medicine (TIGEM), 80078, Pozzuoli, Italy,Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Helena L.A. Vieira
- CEDOC, NOVA Medical School, NMS, Universidade NOVA de Lisboa, Lisboa1169-056, Portugal,UCIBIO, Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal,Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Petra Pennekamp
- Department of General Pediatrics, University Hospital Münster, University of Münster, Münster48149, Germany,Member of the European Reference Networks ERN-LUNG, Lisbon, Portugal
| | - Alessandro Palma
- Department of Onco-hematology, Gene and Cell Therapy, Bambino Gesù Children’s Hospital - IRCCS, Rome, Italy
| | - Liliana Bento-Lopes
- CEDOC, NOVA Medical School, NMS, Universidade NOVA de Lisboa, Lisboa1169-056, Portugal
| | - Heymut Omran
- Department of General Pediatrics, University Hospital Münster, University of Münster, Münster48149, Germany,Member of the European Reference Networks ERN-LUNG, Lisbon, Portugal
| | - Susana S. Lopes
- CEDOC, NOVA Medical School, NMS, Universidade NOVA de Lisboa, Lisboa1169-056, Portugal,Member of the European Reference Networks ERN-LUNG, Lisbon, Portugal
| | - Duarte C. Barral
- CEDOC, NOVA Medical School, NMS, Universidade NOVA de Lisboa, Lisboa1169-056, Portugal
| | - Brunella Franco
- Telethon Institute of Genetics and Medicine (TIGEM), 80078, Pozzuoli, Italy,Medical Genetics, Department of Translational Medical Science, University of Naples “Federico II”, Naples, Italy,Scuola Superiore Meridionale, School for Advanced Studies, Naples, Italy,CONTACT Brunella Franco CEDOC, NOVA Medical School, NMS, Universidade NOVA de Lisboa, Lisboa1169-056, Portugal
| |
Collapse
|
6
|
Ul Islam T, Wang Y, Aggarwal I, Cui Z, Eslami Amirabadi H, Garg H, Kooi R, Venkataramanachar BB, Wang T, Zhang S, Onck PR, den Toonder JMJ. Microscopic artificial cilia - a review. LAB ON A CHIP 2022; 22:1650-1679. [PMID: 35403636 PMCID: PMC9063641 DOI: 10.1039/d1lc01168e] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/04/2022] [Indexed: 05/14/2023]
Abstract
Cilia are microscopic hair-like external cell organelles that are ubiquitously present in nature, also within the human body. They fulfill crucial biological functions: motile cilia provide transportation of fluids and cells, and immotile cilia sense shear stress and concentrations of chemical species. Inspired by nature, scientists have developed artificial cilia mimicking the functions of biological cilia, aiming at application in microfluidic devices like lab-on-chip or organ-on-chip. By actuating the artificial cilia, for example by a magnetic field, an electric field, or pneumatics, microfluidic flow can be generated and particles can be transported. Other functions that have been explored are anti-biofouling and flow sensing. We provide a critical review of the progress in artificial cilia research and development as well as an evaluation of its future potential. We cover all aspects from fabrication approaches, actuation principles, artificial cilia functions - flow generation, particle transport and flow sensing - to applications. In addition to in-depth analyses of the current state of knowledge, we provide classifications of the different approaches and quantitative comparisons of the results obtained. We conclude that artificial cilia research is very much alive, with some concepts close to industrial implementation, and other developments just starting to open novel scientific opportunities.
Collapse
Affiliation(s)
- Tanveer Ul Islam
- Microsystems, Department of Mechanical Engineering, Eindhoven University of Technology, 5612 AE, Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5612 AJ, Eindhoven, The Netherlands
| | - Ye Wang
- Microsystems, Department of Mechanical Engineering, Eindhoven University of Technology, 5612 AE, Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5612 AJ, Eindhoven, The Netherlands
| | - Ishu Aggarwal
- Zernike Institute for Advanced Materials, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Zhiwei Cui
- Microsystems, Department of Mechanical Engineering, Eindhoven University of Technology, 5612 AE, Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5612 AJ, Eindhoven, The Netherlands
| | - Hossein Eslami Amirabadi
- Microsystems, Department of Mechanical Engineering, Eindhoven University of Technology, 5612 AE, Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5612 AJ, Eindhoven, The Netherlands
| | - Hemanshul Garg
- Microsystems, Department of Mechanical Engineering, Eindhoven University of Technology, 5612 AE, Eindhoven, The Netherlands.
- Zernike Institute for Advanced Materials, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Roel Kooi
- Microsystems, Department of Mechanical Engineering, Eindhoven University of Technology, 5612 AE, Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5612 AJ, Eindhoven, The Netherlands
| | - Bhavana B Venkataramanachar
- Microsystems, Department of Mechanical Engineering, Eindhoven University of Technology, 5612 AE, Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5612 AJ, Eindhoven, The Netherlands
| | - Tongsheng Wang
- Microsystems, Department of Mechanical Engineering, Eindhoven University of Technology, 5612 AE, Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5612 AJ, Eindhoven, The Netherlands
| | - Shuaizhong Zhang
- Microsystems, Department of Mechanical Engineering, Eindhoven University of Technology, 5612 AE, Eindhoven, The Netherlands.
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569, Stuttgart, Germany
| | - Patrick R Onck
- Zernike Institute for Advanced Materials, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Jaap M J den Toonder
- Microsystems, Department of Mechanical Engineering, Eindhoven University of Technology, 5612 AE, Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5612 AJ, Eindhoven, The Netherlands
| |
Collapse
|
7
|
Signal transduction in primary cilia - analyzing and manipulating GPCR and second messenger signaling. Pharmacol Ther 2021; 224:107836. [PMID: 33744260 DOI: 10.1016/j.pharmthera.2021.107836] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 12/13/2022]
Abstract
The primary cilium projects from the surface of most vertebrate cells, where it senses extracellular signals to regulate diverse cellular processes during tissue development and homeostasis. Dysfunction of primary cilia underlies the pathogenesis of severe diseases, commonly referred to as ciliopathies. Primary cilia contain a unique protein repertoire that is distinct from the cell body and the plasma membrane, enabling the spatially controlled transduction of extracellular cues. G-protein coupled receptors (GPCRs) are key in sensing environmental stimuli that are transmitted via second messenger signaling into a cellular response. Here, we will give an overview of the role of GPCR signaling in primary cilia, and how ciliary GPCR signaling can be targeted by pharmacology, chemogenetics, and optogenetics.
Collapse
|
8
|
Peng Z, Resnick A, Young YN. Primary cilium: a paradigm for integrating mathematical modeling with experiments and numerical simulations in mechanobiology. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2021; 18:1215-1237. [PMID: 33757184 PMCID: PMC8552149 DOI: 10.3934/mbe.2021066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Primary cilia are non-motile, solitary (one per cell) microtubule-based organelles that emerge from the mother centriole after cells have exited the mitotic cycle. Identified as a mechanosensing organelle that responds to both mechanical and chemical stimuli, the primary cilium provides a fertile ground for integrative investigations of mathematical modeling, numerical simulations, and experiments. Recent experimental findings revealed considerable complexity to the underlying mechanosensory mechanisms that transmit extracellular stimuli to intracellular signaling many of which include primary cilia. In this invited review, we provide a brief survey of experimental findings on primary cilia and how these results lead to various mathematical models of the mechanics of the primary cilium bent under an external forcing such as a fluid flow or a trap. Mathematical modeling of the primary cilium as a fluid-structure interaction problem highlights the importance of basal anchorage and the anisotropic moduli of the microtubules. As theoretical modeling and numerical simulations progress, along with improved state-of-the-art experiments on primary cilia, we hope that details of ciliary regulated mechano-chemical signaling dynamics in cellular physiology will be understood in the near future.
Collapse
Affiliation(s)
- Zhangli Peng
- Department of Bioengineering, University of Illinois at Chicago, 851 S. Morgan St., Chicago, IL 60607, USA
| | - Andrew Resnick
- Department of Physics, Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, OH 44115, USA
| | - Y.-N. Young
- Department of Mathematical Sciences, New Jersey Institute of Technology, University Heights, Newark, NJ 07102, USA
| |
Collapse
|