1
|
Gou Z, Zhang D, Cao H, Li Y, Li Y, Zhao Z, Wang Y, Wang Y, Zhou H. Exploring the nexus between MYH9 and tumors: novel insights and new therapeutic opportunities. Front Cell Dev Biol 2024; 12:1421763. [PMID: 39149512 PMCID: PMC11325155 DOI: 10.3389/fcell.2024.1421763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/19/2024] [Indexed: 08/17/2024] Open
Abstract
The myosin heavy chain 9 (MYH9) gene, located on human chromosome 22, encodes non-muscle myosin heavy chain IIA (NM IIA). This protein is essential to various cellular events, such as generating intracellular chemomechanical force and facilitating the movement of the actin cytoskeleton. Mutations associated with thrombocytopenia in autosomal dominant diseases first highlighted the significance of the MYH9 gene. In recent years, numerous studies have demonstrated the pivotal roles of MYH9 in various cancers. However, its effects on cancer are intricate and not fully comprehended. Furthermore, the elevated expression of MYH9 in certain malignancies suggests its potential as a target for tumor therapy. Nonetheless, there is a paucity of literature summarizing MYH9's role in tumors and the therapeutic strategies centered on it, necessitating a systematic analysis. This paper comprehensively reviews and analyzes the pertinent literature in this domain, elucidating the fundamental structural characteristics, biological functions, and the nexus between MYH9 and tumors. The mechanisms through which MYH9 contributes to tumor development and its multifaceted roles in the tumorigenic process are also explored. Additionally, we discuss the relationship between MYH9-related diseases (MYH9-RD) and tumors and also summarize tumor therapeutic approaches targeting MYH9. The potential clinical applications of studying the MYH9 gene include improving early diagnosis, clinical staging, and prognosis of tumors. This paper is anticipated to provide novel insights for tumor therapy.
Collapse
Affiliation(s)
- Zixuan Gou
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Difei Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Hongliang Cao
- Department of Urology II, The First Hospital of Jilin University, Changchun, China
| | - Yao Li
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Yunkuo Li
- Department of Urology II, The First Hospital of Jilin University, Changchun, China
| | - Zijian Zhao
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Ye Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Honglan Zhou
- Department of Urology II, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
2
|
Ueda Y, Matsunaga D, Deguchi S. Asymmetric response emerges between creation and disintegration of force-bearing subcellular structures as revealed by percolation analysis. Integr Biol (Camb) 2024; 16:zyae012. [PMID: 38900169 DOI: 10.1093/intbio/zyae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/23/2024] [Indexed: 06/21/2024]
Abstract
Cells dynamically remodel their internal structures by modulating the arrangement of actin filaments (AFs). In this process, individual AFs exhibit stochastic behavior without knowing the macroscopic higher-order structures they are meant to create or disintegrate, but the mechanism allowing for such stochastic process-driven remodeling of subcellular structures remains incompletely understood. Here we employ percolation theory to explore how AFs interacting only with neighboring ones without recognizing the overall configuration can nonetheless create a substantial structure referred to as stress fibers (SFs) at particular locations. We determined the interaction probabilities of AFs undergoing cellular tensional homeostasis, a fundamental property maintaining intracellular tension. We showed that the duration required for the creation of SFs is shortened by the increased amount of preexisting actin meshwork, while the disintegration occurs independently of the presence of actin meshwork, suggesting that the coexistence of tension-bearing and non-bearing elements allows cells to promptly transition to new states in accordance with transient environmental changes. The origin of this asymmetry between creation and disintegration, consistently observed in actual cells, is elucidated through a minimal model analysis by examining the intrinsic nature of mechano-signal transmission. Specifically, unlike the symmetric case involving biochemical communication, physical communication to sense environmental changes is facilitated via AFs under tension, while other free AFs dissociated from tension-bearing structures exhibit stochastic behavior. Thus, both the numerical and minimal models demonstrate the essence of intracellular percolation, in which macroscopic asymmetry observed at the cellular level emerges not from microscopic asymmetry in the interaction probabilities of individual molecules, but rather only as a consequence of the manner of the mechano-signal transmission. These results provide novel insights into the role of the mutual interplay between distinct subcellular structures with and without tension-bearing capability. Insight: Cells continuously remodel their internal elements or structural proteins in response to environmental changes. Despite the stochastic behavior of individual structural proteins, which lack awareness of the larger subcellular structures they are meant to create or disintegrate, this self-assembly process somehow occurs to enable adaptation to the environment. Here we demonstrated through percolation simulations and minimal model analyses that there is an asymmetry in the response between the creation and disintegration of subcellular structures, which can aid environmental adaptation. This asymmetry inherently arises from the nature of mechano-signal transmission through structural proteins, namely tension-mediated information exchange within cells, despite the stochastic behavior of individual proteins lacking asymmetric characters in themselves.
Collapse
Affiliation(s)
- Yuika Ueda
- Division of Bioengineering, Graduate School of Engineering Science, Osaka University
| | - Daiki Matsunaga
- Division of Bioengineering, Graduate School of Engineering Science, Osaka University
| | - Shinji Deguchi
- Division of Bioengineering, Graduate School of Engineering Science, Osaka University
| |
Collapse
|
3
|
Saito T, Matsunaga D, Deguchi S. Analysis of chemomechanical behavior of stress fibers by continuum mechanics-based FRAP. Biophys J 2022; 121:2921-2930. [PMID: 35778840 PMCID: PMC9388576 DOI: 10.1016/j.bpj.2022.06.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/07/2022] [Accepted: 06/27/2022] [Indexed: 11/18/2022] Open
Abstract
Fluorescence recovery after photobleaching (FRAP) is a common technique to analyze the turnover of molecules in living cells. Numerous physicochemical models have been developed to quantitatively evaluate the rate of turnover driven by chemical reaction and diffusion that occurs in a few seconds to minutes. On the other hand, they have limitations in interpreting long-term FRAP responses where intracellular active movement inevitably provides target molecular architectures with additional effects other than chemical reaction and diffusion, namely directed transport and structural deformation. To overcome the limitations, we develop a continuum mechanics-based model that allows for decoupling FRAP response into the intrinsic turnover rate and subcellular mechanical characteristics such as displacement vector and strain tensor. Our approach was validated using fluorescently labeled β-actin in an actomyosin-mediated contractile apparatus called stress fibers, revealing spatially distinct patterns of the multi-physicochemical events, in which the turnover rate, which represents effective off-rate of β-actin, was significantly higher at the center of the cell. We also found that the turnover rate is negatively correlated with the rate of displacement or velocity along stress fibers but, interestingly, not with the absolute magnitude of strain. Moreover, stress fibers are subjected to centripetal flow that is facilitated by the circulation of actin molecules. Taken together, this novel framework for long-term FRAP analysis allows for unveiling the contribution of overlooked microscopic mechanics to molecular turnover in living cells.
Collapse
Affiliation(s)
- Takumi Saito
- Division of Bioengineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan; Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan.
| | - Daiki Matsunaga
- Division of Bioengineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan
| | - Shinji Deguchi
- Division of Bioengineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan.
| |
Collapse
|
4
|
Liu S, Matsui TS, Kang N, Deguchi S. Analysis of senescence-responsive stress fiber proteome reveals reorganization of stress fibers mediated by elongation factor eEF2 in HFF-1 cells. Mol Biol Cell 2021; 33:ar10. [PMID: 34705524 PMCID: PMC8886821 DOI: 10.1091/mbc.e21-05-0229] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Stress fibers (SFs), which are actomyosin structures, reorganize in response to various cues to maintain cellular homeostasis. Currently, the protein components of SFs are only partially identified, limiting our understanding of their responses. Here we isolate SFs from human fibroblasts HFF-1 to determine with proteomic analysis the whole protein components and how they change with replicative senescence (RS), a state where cells decline in the ability to replicate after repeated divisions. We found that at least 135 proteins are associated with SFs, and 63 of them are up-regulated with RS, by which SFs become larger in size. Among them, we focused on eEF2 (eukaryotic translation elongation factor 2) as it exhibited on RS the most significant increase in abundance. We show that eEF2 is critical to the reorganization and stabilization of SFs in senescent fibroblasts. Our findings provide a novel molecular basis for SFs to be reinforced to resist cellular senescence.
Collapse
Affiliation(s)
- Shiyou Liu
- Division of Bioengineering, Graduate School of Engineering Science, Osaka University, Japan
| | - Tsubasa S Matsui
- Division of Bioengineering, Graduate School of Engineering Science, Osaka University, Japan
| | - Na Kang
- Division of Bioengineering, Graduate School of Engineering Science, Osaka University, Japan
| | - Shinji Deguchi
- Division of Bioengineering, Graduate School of Engineering Science, Osaka University, Japan
| |
Collapse
|
5
|
Huang W, Matsui TS, Saito T, Kuragano M, Takahashi M, Kawahara T, Sato M, Deguchi S. Mechanosensitive myosin II but not cofilin primarily contributes to cyclic cell stretch-induced selective disassembly of actin stress fibers. Am J Physiol Cell Physiol 2021; 320:C1153-C1163. [PMID: 33881935 DOI: 10.1152/ajpcell.00225.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cells adapt to applied cyclic stretch (CS) to circumvent chronic activation of proinflammatory signaling. Currently, the molecular mechanism of the selective disassembly of actin stress fibers (SFs) in the stretch direction, which occurs at the early stage of the cellular response to CS, remains controversial. Here, we suggest that the mechanosensitive behavior of myosin II, a major cross-linker of SFs, primarily contributes to the directional disassembly of the actomyosin complex SFs in bovine vascular smooth muscle cells and human U2OS osteosarcoma cells. First, we identified that CS with a shortening phase that exceeds in speed the inherent contractile rate of individual SFs leads to the disassembly. To understand the biological basis, we investigated the effect of expressing myosin regulatory light-chain mutants and found that SFs with less actomyosin activities disassemble more promptly upon CS. We consequently created a minimal mathematical model that recapitulates the salient features of the direction-selective and threshold-triggered disassembly of SFs to show that disassembly or, more specifically, unbundling of the actomyosin bundle SFs is enhanced with sufficiently fast cell shortening. We further demonstrated that similar disassembly of SFs is inducible in the presence of an active LIM-kinase-1 mutant that deactivates cofilin, suggesting that cofilin is dispensable as opposed to a previously proposed mechanism.
Collapse
Affiliation(s)
- Wenjing Huang
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Tsubasa S Matsui
- Division of Bioengineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Japan
| | - Takumi Saito
- Division of Bioengineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Japan
| | - Masahiro Kuragano
- Graduate School of Chemical Science and Engineering, Hokkaido University, Sapporo, Japan
| | - Masayuki Takahashi
- Graduate School of Chemical Science and Engineering, Hokkaido University, Sapporo, Japan
| | - Tomohiro Kawahara
- Department of Biological Functions Engineering, Kyushu Institute of Technology, Kitakyushu, Japan
| | - Masaaki Sato
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Japan
| | - Shinji Deguchi
- Division of Bioengineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Japan
| |
Collapse
|