1
|
Lai R, Jiang J, Huo Y, Wang H, Bosiakov S, Lyu Y, Li L. Design of novel graded bone scaffolds based on triply periodic minimal surfaces with multi-functional pores. Front Bioeng Biotechnol 2025; 13:1503582. [PMID: 40013308 PMCID: PMC11861085 DOI: 10.3389/fbioe.2025.1503582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 01/13/2025] [Indexed: 02/28/2025] Open
Abstract
Background Various mechanical and biological requirements on bone scaffolds were proposed due to the clinical demands of human bone implants, which remains a challenge when designing appropriate bone scaffolds. Methods In this study, novel bone scaffolds were developed by introducing graded multi-functional pores onto Triply Periodic Minimal Surface (TPMS) structures through topology optimization of unit cell. The performance of these scaffolds was evaluated using finite element (FE) analysis and computational fluid dynamics (CFD) method. Results The results from FE analysis indicated that the novel scaffold exhibited a lower elastic modulus, potentially mitigating the issue of stress shielding. Additionally, the results from CFD demonstrated that the mass transport capacity of the novel scaffold was significantly improved compared to conventional TPMS scaffolds. Conclusion In summary, the novel TPMS scaffolds with graded multi-functional pores presented in this paper exhibited enhanced mechanical properties and mass transport capacity, making them ideal candidates for bone repair. A new design framework was provided for the development of high-performance bone scaffolds.
Collapse
Affiliation(s)
- Rongwu Lai
- Department of Spinal Surgery, Central Hospital of Dalian University of Technology, Dalian, China
- School of Mechanics and Aerospace Engineering, Dalian University of Technology, Dalian, China
| | - Jian Jiang
- Department of Spinal Surgery, Central Hospital of Dalian University of Technology, Dalian, China
- Department of Orthopaedic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yi Huo
- School of Mechanics and Aerospace Engineering, Dalian University of Technology, Dalian, China
| | - Hao Wang
- School of Mechanics and Aerospace Engineering, Dalian University of Technology, Dalian, China
| | - Sergei Bosiakov
- Faculty of Mechanics and Mathematics, Belarusian State University, Minsk, Belarus
| | - Yongtao Lyu
- School of Mechanics and Aerospace Engineering, Dalian University of Technology, Dalian, China
- DUT-BSU Joint Institute, Dalian University of Technology, Dalian, China
| | - Lei Li
- Department of Orthopaedic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
2
|
Jiang J, Huo Y, Peng X, Wu C, Zhu H, Lyu Y. Design of novel triply periodic minimal surface (TPMS) bone scaffold with multi-functional pores: lower stress shielding and higher mass transport capacity. Front Bioeng Biotechnol 2024; 12:1401899. [PMID: 38994122 PMCID: PMC11238189 DOI: 10.3389/fbioe.2024.1401899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/07/2024] [Indexed: 07/13/2024] Open
Abstract
Background: The bone repair requires the bone scaffolds to meet various mechanical and biological requirements, which makes the design of bone scaffolds a challenging problem. Novel triply periodic minimal surface (TPMS)-based bone scaffolds were designed in this study to improve the mechanical and biological performances simultaneously. Methods: The novel bone scaffolds were designed by adding optimization-guided multi-functional pores to the original scaffolds, and finite element (FE) method was used to evaluate the performances of the novel scaffolds. In addition, the novel scaffolds were fabricated by additive manufacturing (AM) and mechanical experiments were performed to evaluate the performances. Results: The FE results demonstrated the improvement in performance: the elastic modulus reduced from 5.01 GPa (original scaffold) to 2.30 GPa (novel designed scaffold), resulting in lower stress shielding; the permeability increased from 8.58 × 10-9 m2 (original scaffold) to 5.14 × 10-8 m2 (novel designed scaffold), resulting in higher mass transport capacity. Conclusion: In summary, the novel TPMS scaffolds with multi-functional pores simultaneously improve the mechanical and biological performances, making them ideal candidates for bone repair. Furthermore, the novel scaffolds expanded the design domain of TPMS-based bone scaffolds, providing a promising new method for the design of high-performance bone scaffolds.
Collapse
Affiliation(s)
- Jian Jiang
- Department of Spinal Surgery, Central Hospital of Dalian University of Technology, Dalian, China
| | - Yi Huo
- School of Mechanics and Aerospace Engineering, Dalian University of Technology, Dalian, China
| | - Xing Peng
- Tribology Research Institute, School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, China
| | - Chengwei Wu
- School of Mechanics and Aerospace Engineering, Dalian University of Technology, Dalian, China
- State Key Laboratory of Structural Analysis Optimization and CAE Software for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian, China
| | - Hanxing Zhu
- School of Engineering, Cardiff University, Cardiff, United Kingdom
| | - Yongtao Lyu
- School of Mechanics and Aerospace Engineering, Dalian University of Technology, Dalian, China
| |
Collapse
|
3
|
Gupta A, Das A, Barui A, Das A, Roy Chowdhury A. Evaluating the cell migration potential of TiO 2 nanorods incorporated in a Ti 6Al 4V scaffold: A multiscale approach. J Mech Behav Biomed Mater 2023; 144:105940. [PMID: 37300993 DOI: 10.1016/j.jmbbm.2023.105940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/19/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023]
Abstract
Improvement of cell migration by the nano-topographical modification of implant surface can directly or indirectly accelerate wound healing and osseointegration between bone and implant. Therefore, modification of the implant surface was done with TiO2 nanorod (NR) arrays to develop a more osseointegration-friendly implant in this study. Modulating the migration of a cell, adhered to a scaffold, by the variations of NR diameter, density and tip diameter in vitro is the primary objective of the study. The fluid structure interaction method was used, followed by the submodelling technique in this multiscale analysis. After completing a simulation over a global model, fluid structure interaction data was applied to the sub-scaffold finite element model to predict the mechanical response over cells at the cell-substrate interface. Special focus was given to strain energy density at the cell interface as a response parameter due to its direct correlation with the migration of an adherent cell. The results showed a huge rise in strain energy density after the addition of NRs on the scaffold surface. It also highlighted that variation in NR density plays a more effective role than the variation in NR diameter to control cell migration over a substrate. However, the effect of NR diameter becomes insignificant when the NR tip was considered. The findings of this study could be used to determine the best nanostructure parameters for better osseointegration.
Collapse
Affiliation(s)
- Abhisek Gupta
- Department of Aerospace Engineering and Applied Mechanics, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, India
| | - Ankita Das
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, India
| | - Ananya Barui
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, India
| | - Apurba Das
- Department of Aerospace Engineering and Applied Mechanics, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, India
| | - Amit Roy Chowdhury
- Department of Aerospace Engineering and Applied Mechanics, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, India.
| |
Collapse
|
4
|
The Effect of Tortuosity on Permeability of Porous Scaffold. Biomedicines 2023; 11:biomedicines11020427. [PMID: 36830961 PMCID: PMC9953537 DOI: 10.3390/biomedicines11020427] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023] Open
Abstract
In designing porous scaffolds, permeability is essential to consider as a function of cell migration and bone tissue regeneration. Good permeability has been achieved by mimicking the complexity of natural cancellous bone. In this study, a porous scaffold was developed according to the morphological indices of cancellous bone (porosity, specific surface area, thickness, and tortuosity). The computational fluid dynamics method analyzes the fluid flow through the scaffold. The permeability values of natural cancellous bone and three types of scaffolds (cubic, octahedron pillar, and Schoen's gyroid) were compared. The results showed that the permeability of the Negative Schwarz Primitive (NSP) scaffold model was similar to that of natural cancellous bone, which was in the range of 2.0 × 10-11 m2 to 4.0 × 10-10 m2. In addition, it was observed that the tortuosity parameter significantly affected the scaffold's permeability and shear stress values. The tortuosity value of the NSP scaffold was in the range of 1.5-2.8. Therefore, tortuosity can be manipulated by changing the curvature of the surface scaffold radius to obtain a superior bone tissue engineering construction supporting cell migration and tissue regeneration. This parameter should be considered when making new scaffolds, such as our NSP. Such efforts will produce a scaffold architecturally and functionally close to the natural cancellous bone, as demonstrated in this study.
Collapse
|
5
|
Huang XH, Zheng LQ, Dai YX, Hu SN, Ning WC, Li SM, Fan YG, Lin ZL, Huang SH. Combined computational analysis and cytology show limited depth osteogenic effect on bone defects in negative pressure wound therapy. Front Bioeng Biotechnol 2023; 11:1056707. [PMID: 36873351 PMCID: PMC9978480 DOI: 10.3389/fbioe.2023.1056707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 02/09/2023] [Indexed: 02/18/2023] Open
Abstract
Background: The treatment of bone defects remains a clinical challenge. The effect of negative pressure wound therapy (NPWT) on osteogenesis in bone defects has been recognized; however, bone marrow fluid dynamics under negative pressure (NP) remain unknown. In this study, we aimed to examine the marrow fluid mechanics within trabeculae by computational fluid dynamics (CFD), and to verify osteogenic gene expression, osteogenic differentiation to investigate the osteogenic depth under NP. Methods: The human femoral head is scanned using micro-CT to segment the volume of interest (VOI) trabeculae. The VOI trabeculae CFD model simulating the bone marrow cavity is developed by combining the Hypermesh and ANSYS software. The effect of trabecular anisotropy is investigated, and bone regeneration effects are simulated under NP scales of -80, -120, -160, and -200 mmHg. The working distance (WD) is proposed to describe the suction depth of the NP. Finally, gene sequence analysis, cytological experiments including bone mesenchymal stem cells (BMSCs) proliferation and osteogenic differentiation are conducted after the BMSCs are cultured under the same NP scale. Results: The pressure, shear stress on trabeculae, and marrow fluid velocity decrease exponentially with an increase in WD. The hydromechanics of fluid at any WD inside the marrow cavity can be theoretically quantified. The NP scale significantly affects the fluid properties, especially those fluid close to the NP source; however, the effect of the NP scale become marginal as WD deepens. Anisotropy of trabecular structure coupled with the anisotropic hydrodynamic behavior of bone marrow; An NP of -120 mmHg demonstrates the majority of bone formation-related genes, as well as the most effective proliferation and osteogenic differentiation of BMSCs compared to the other NP scales. Conclusion: An NP of -120 mmHg may have the optimal activated ability to promote osteogenesis, but the effective WD may be limited to a certain depth. These findings help improve the understanding of fluid mechanisms behind NPWT in treating bone defects.
Collapse
Affiliation(s)
- Xiu-Hong Huang
- School of Stomatology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Li-Qin Zheng
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yue-Xing Dai
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shao-Nan Hu
- School of Stomatology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Wan-Chen Ning
- School of Stomatology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Si-Min Li
- School of Stomatology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Yue-Guang Fan
- Department of Joint Surgery, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zi-Ling Lin
- Department of Orthopedic Trauma, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shao-Hong Huang
- School of Stomatology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
6
|
Zhao Z, Li J, Yao D, Wei Y. Mechanical and permeability properties of porous scaffolds developed by a Voronoi tessellation for bone tissue engineering. J Mater Chem B 2022; 10:9699-9712. [PMID: 36398681 DOI: 10.1039/d2tb01478e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Irregular porous structures for guided bone regeneration applications have gained increasing attention as they are similar to human bone and more suitable for bone tissue growth. However, pore irregularity as a critical characteristic has been poorly explored. This study proposed a method for parametrically designing porous scaffolds based on a Voronoi tessellation which were manufactured by selective laser sintering (SLS) using the polyamide 12 (PA12) material. The deformation mechanism and energy absorption properties of the prepared Voronoi scaffolds were investigated by quasi-static compression experiments. The results demonstrated that the Voronoi scaffold underwent bending deformation subsequent to transverse expansion under compression, and the Voronoi scaffold simultaneously had been indicated to be effective in improving the carrying capacity and energy absorption performance. Subsequently, computational fluid dynamics (CFD) and cell proliferation tests were introduced to comprehensively assess the influence of the scaffolds on cell growth. CFD analysis showed that the permeability of the surveyed scaffolds is between 3.65 × 10-8 and 12.05 × 10-8 m2 similar to that of natural cancellous bone. The cell test expressed that the scaffold exhibits good cell activity, which can be used to promote cell adhesion and migration with superior potential for development and application.
Collapse
Affiliation(s)
- Ze Zhao
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China.
| | - Junchao Li
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China.
| | - Dingrou Yao
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China.
| | - Yuan Wei
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
7
|
Fluid Flow Analysis of Integrated Porous Bone Scaffold and Cancellous Bone at Different Skeletal Sites: In Silico Study. Transp Porous Media 2022. [DOI: 10.1007/s11242-022-01849-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
On the microstructurally driven heterogeneous response of brain white matter to drug infusion pressure. Biomech Model Mechanobiol 2022; 21:1299-1316. [PMID: 35717548 PMCID: PMC9283367 DOI: 10.1007/s10237-022-01592-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 05/10/2022] [Indexed: 12/12/2022]
Abstract
Delivering therapeutic agents into the brain via convection-enhanced delivery (CED), a mechanically controlled infusion method, provides an efficient approach to bypass the blood–brain barrier and deliver drugs directly to the targeted focus in the brain. Mathematical methods based on Darcy’s law have been widely adopted to predict drug distribution in the brain to improve the accuracy and reduce the side effects of this technique. However, most of the current studies assume that the hydraulic permeability and porosity of brain tissue are homogeneous and constant during the infusion process, which is less accurate due to the deformability of the axonal structures and the extracellular matrix in brain white matter. To solve this problem, a multiscale model was established in this study, which takes into account the pressure-driven deformation of brain microstructure to quantify the change of local permeability and porosity. The simulation results were corroborated using experiments measuring hydraulic permeability in ovine brain samples. Results show that both hydraulic pressure and drug concentration in the brain would be significantly underestimated by classical Darcy’s law, thus highlighting the great importance of the present multiscale model in providing a better understanding of how drugs transport inside the brain and how brain tissue responds to the infusion pressure. This new method can assist the development of both new drugs for brain diseases and preoperative evaluation techniques for CED surgery, thus helping to improve the efficiency and precision of treatments for brain diseases.
Collapse
|