1
|
Gao RJ, Aikeremu N, Cao N, Chen C, Ma KT, Li L, Zhang AM, Si JQ. Quercetin regulates pulmonary vascular remodeling in pulmonary hypertension by downregulating TGF-β1-Smad2/3 pathway. BMC Cardiovasc Disord 2024; 24:535. [PMID: 39367342 PMCID: PMC11451247 DOI: 10.1186/s12872-024-04192-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 09/12/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is a worldwide challenging disease characterized by progressive elevation of pulmonary artery pressure. The proliferation, migration and phenotypic transformation of pulmonary smooth muscle cells are the key steps of pulmonary vascular remodeling. Quercetin (3,3', 4', 5, 6-pentahydroxyflavone, Que) is a natural flavonol compound that has antioxidant, anti-inflammatory, anti-tumor and other biological activities. Studies have shown that Que has therapeutic effects on PAH. However, the effect of quercetin on pulmonary vascular remodeling in PAH and its mechanism remain unclear. METHODS AND RESULTS In vivo, PAH rats were constructed by intraperitoneal injection of monocrotaline (MCT) at 60 mg/kg. Human pulmonary artery smooth muscle cells (HPASMCs) were treated with platelet-derived growth factor BB (PDGF-BB) 20 ng/mL to construct PAH cell model in vitro. The results showed that in vivo studies, MCT could induce right ventricular wall hyperplasia, narrow the small and medium pulmonary artery cavity, up-regulate the expression of proliferating and migration-related proteins proliferating cell nuclear antigen (PCNA) and osteopontin (OPN), and down-regulate the expression of alpha-smooth muscle actin (α-SMA). Que reversed the MCT-induced results. This process works by down-regulating the transforming growth factor-β1 (TGF-β1)/ Smad2/3 signaling pathway. In vitro studies, Que had the same effect on PDGF-BB-induced proliferation and migration cell models. CONCLUSIONS Que inhibits the proliferation, migration and phenotypic transformation of HPASMCs by down-regulating TGF-β1/Smad2/Smad3 pathway, thereby reducing right ventricular hyperplasia (RVH) and pulmonary vascular remodeling, providing potential pharmacological and molecular explanations for the treatment of PAH.
Collapse
MESH Headings
- Animals
- Vascular Remodeling/drug effects
- Transforming Growth Factor beta1/metabolism
- Pulmonary Artery/drug effects
- Pulmonary Artery/metabolism
- Pulmonary Artery/physiopathology
- Pulmonary Artery/pathology
- Smad2 Protein/metabolism
- Signal Transduction/drug effects
- Smad3 Protein/metabolism
- Quercetin/pharmacology
- Disease Models, Animal
- Cell Proliferation/drug effects
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Humans
- Cell Movement/drug effects
- Cells, Cultured
- Down-Regulation
- Male
- Rats, Sprague-Dawley
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Monocrotaline
- Pulmonary Arterial Hypertension/drug therapy
- Pulmonary Arterial Hypertension/physiopathology
- Pulmonary Arterial Hypertension/metabolism
- Pulmonary Arterial Hypertension/chemically induced
- Becaplermin/pharmacology
- Osteopontin/metabolism
Collapse
Affiliation(s)
- Rui-Juan Gao
- Department of Medical Imaging Center, First Affiliated Hospital of Shihezi University, Shihezi, Xinjiang, 832002, China
- Department of Physiology, Shihezi University School of Medicine, Xinjiang, North Second Road, Shihezi, Xinjiang, 832000, China
| | - Nigala Aikeremu
- Department of Physiology, Shihezi University School of Medicine, Xinjiang, North Second Road, Shihezi, Xinjiang, 832000, China
| | - Nan Cao
- Department of Physiology, Kangda College of Nanjing Medical University, Lianyungang, Jiangsu, 222061, China
| | - Chong Chen
- Department of Intensive Care Medicine, the Third People's Hospital of Xinjiang Autonomous Region, Urumqi, Xinjiang, 830000, China
| | - Ke-Tao Ma
- Department of Physiology, Shihezi University School of Medicine, Xinjiang, North Second Road, Shihezi, Xinjiang, 832000, China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China
- NHC Key Laboratory of Prevention, and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China
| | - Li Li
- Department of Physiology, Medical College of Jiaxing University, Jiaxing, 314001, China
| | - Ai-Mei Zhang
- The 3Rd Department of Cardiology, First Affiliated Hospital of Shihezi University, Xinjiang, 832002, China.
| | - Jun-Qiang Si
- Department of Physiology, Shihezi University School of Medicine, Xinjiang, North Second Road, Shihezi, Xinjiang, 832000, China.
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China.
- NHC Key Laboratory of Prevention, and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China.
- Department of Physiology, Huazhong University of Science and Technology of Basic Medical Sciences, Wuhan, 430070, China.
| |
Collapse
|
2
|
Sanges S, Tian W, Dubucquoi S, Chang JL, Collet A, Launay D, Nicolls MR. B-cells in pulmonary arterial hypertension: friend, foe or bystander? Eur Respir J 2024; 63:2301949. [PMID: 38485150 PMCID: PMC11043614 DOI: 10.1183/13993003.01949-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/01/2024] [Indexed: 04/22/2024]
Abstract
There is an unmet need for new therapeutic strategies that target alternative pathways to improve the prognosis of patients with pulmonary arterial hypertension (PAH). As immunity has been involved in the development and progression of vascular lesions in PAH, we review the potential contribution of B-cells in its pathogenesis and evaluate the relevance of B-cell-targeted therapies. Circulating B-cell homeostasis is altered in PAH patients, with total B-cell lymphopenia, abnormal subset distribution (expansion of naïve and antibody-secreting cells, reduction of memory B-cells) and chronic activation. B-cells are recruited to the lungs through local chemokine secretion, and activated by several mechanisms: 1) interaction with lung vascular autoantigens through cognate B-cell receptors; 2) costimulatory signals provided by T follicular helper cells (interleukin (IL)-21), type 2 T helper cells and mast cells (IL-4, IL-6 and IL-13); and 3) increased survival signals provided by B-cell activating factor pathways. This activity results in the formation of germinal centres within perivascular tertiary lymphoid organs and in the local production of pathogenic autoantibodies that target the pulmonary vasculature and vascular stabilisation factors (including angiotensin-II/endothelin-1 receptors and bone morphogenetic protein receptors). B-cells also mediate their effects through enhanced production of pro-inflammatory cytokines, reduced anti-inflammatory properties by regulatory B-cells, immunoglobulin (Ig)G-induced complement activation, and IgE-induced mast cell activation. Precision-medicine approaches targeting B-cell immunity are a promising direction for select PAH conditions, as suggested by the efficacy of anti-CD20 therapy in experimental models and a trial of rituximab in systemic sclerosis-associated PAH.
Collapse
Affiliation(s)
- Sébastien Sanges
- Univ. Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France
- INSERM, F-59000 Lille, France
- CHU Lille, Département de Médecine Interne et Immunologie Clinique, F-59000 Lille, France
- Centre National de Référence Maladies Auto-immunes Systémiques Rares du Nord, Nord-Ouest, Méditerranée et Guadeloupe (CeRAINOM), F-59000 Lille, France
- Health Care Provider of the European Reference Network on Rare Connective Tissue and Musculoskeletal Diseases Network (ReCONNET), F-59000 Lille, France
- Veteran Affairs Palo Alto Health Care System, Palo Alto, CA, USA
- Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University, School of Medicine, Stanford, CA, USA
- Both authors contributed equally and share co-first authorship
| | - Wen Tian
- Veteran Affairs Palo Alto Health Care System, Palo Alto, CA, USA
- Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University, School of Medicine, Stanford, CA, USA
- Both authors contributed equally and share co-first authorship
| | - Sylvain Dubucquoi
- Univ. Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France
- INSERM, F-59000 Lille, France
- CHU Lille, Institut d'Immunologie, Pôle de Biologie Pathologie Génétique, F-59000 Lille, France
| | - Jason L Chang
- Veteran Affairs Palo Alto Health Care System, Palo Alto, CA, USA
- Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University, School of Medicine, Stanford, CA, USA
| | - Aurore Collet
- Univ. Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France
- INSERM, F-59000 Lille, France
- CHU Lille, Institut d'Immunologie, Pôle de Biologie Pathologie Génétique, F-59000 Lille, France
| | - David Launay
- Univ. Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France
- INSERM, F-59000 Lille, France
- CHU Lille, Département de Médecine Interne et Immunologie Clinique, F-59000 Lille, France
- Centre National de Référence Maladies Auto-immunes Systémiques Rares du Nord, Nord-Ouest, Méditerranée et Guadeloupe (CeRAINOM), F-59000 Lille, France
- Health Care Provider of the European Reference Network on Rare Connective Tissue and Musculoskeletal Diseases Network (ReCONNET), F-59000 Lille, France
- Veteran Affairs Palo Alto Health Care System, Palo Alto, CA, USA
- Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University, School of Medicine, Stanford, CA, USA
- Both authors contributed equally and share co-last authorship
| | - Mark R Nicolls
- Veteran Affairs Palo Alto Health Care System, Palo Alto, CA, USA
- Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University, School of Medicine, Stanford, CA, USA
- Both authors contributed equally and share co-last authorship
| |
Collapse
|
3
|
Uruski P, Matuszewska J, Leśniewska A, Rychlewski D, Niklas A, Mikuła-Pietrasik J, Tykarski A, Książek K. An integrative review of nonobvious puzzles of cellular and molecular cardiooncology. Cell Mol Biol Lett 2023; 28:44. [PMID: 37221467 DOI: 10.1186/s11658-023-00451-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/17/2023] [Indexed: 05/25/2023] Open
Abstract
Oncologic patients are subjected to four major treatment types: surgery, radiotherapy, chemotherapy, and immunotherapy. All nonsurgical forms of cancer management are known to potentially violate the structural and functional integrity of the cardiovascular system. The prevalence and severity of cardiotoxicity and vascular abnormalities led to the emergence of a clinical subdiscipline, called cardiooncology. This relatively new, but rapidly expanding area of knowledge, primarily focuses on clinical observations linking the adverse effects of cancer therapy with deteriorated quality of life of cancer survivors and their increased morbidity and mortality. Cellular and molecular determinants of these relations are far less understood, mainly because of several unsolved paths and contradicting findings in the literature. In this article, we provide a comprehensive view of the cellular and molecular etiology of cardiooncology. We pay particular attention to various intracellular processes that arise in cardiomyocytes, vascular endothelial cells, and smooth muscle cells treated in experimentally-controlled conditions in vitro and in vivo with ionizing radiation and drugs representing diverse modes of anti-cancer activity.
Collapse
Affiliation(s)
- Paweł Uruski
- Department of Hypertensiology, Poznań University of Medical Sciences, Długa ½ Str., 61-848, Poznan, Poland
| | - Julia Matuszewska
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznań University of Medical Sciences, Długa ½ Str., 61-848, Poznan, Poland
| | - Aleksandra Leśniewska
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznań University of Medical Sciences, Długa ½ Str., 61-848, Poznan, Poland
| | - Daniel Rychlewski
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznań University of Medical Sciences, Długa ½ Str., 61-848, Poznan, Poland
| | - Arkadiusz Niklas
- Department of Hypertensiology, Poznań University of Medical Sciences, Długa ½ Str., 61-848, Poznan, Poland
| | - Justyna Mikuła-Pietrasik
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznań University of Medical Sciences, Długa ½ Str., 61-848, Poznan, Poland
| | - Andrzej Tykarski
- Department of Hypertensiology, Poznań University of Medical Sciences, Długa ½ Str., 61-848, Poznan, Poland
| | - Krzysztof Książek
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznań University of Medical Sciences, Długa ½ Str., 61-848, Poznan, Poland.
| |
Collapse
|
4
|
Xin Z, Wang J, Li S, Sun C, Jiang W, Xin Q, Wang J, Qi T, Li K, Zhang Z, Luan Y. A review of BMP and Wnt signaling pathway in the pathogenesis of pulmonary arterial hypertension. Clin Exp Hypertens 2021; 44:175-180. [PMID: 34821188 DOI: 10.1080/10641963.2021.1996590] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a chronic disease characterized by a progressive elevation in mean pulmonary arterial pressure. This occurs due to abnormal remodeling of small peripheral lung vasculature resulting in progressive occlusion of the artery lumen that eventually causes right heart failure and death. Current therapeutic options for PAH are limited and focused mainly on reversal of pulmonary vasoconstriction and proliferation of vascular cells. Although these treatments can relieve disease symptoms, PAH remains a progressive lethal disease.Bone morphogenetic proteins (BMPs) and their receptors were required for PAH-induced right ventricular hypertrophy. Emerging data suggest that restoration of BMP type II receptor (BMPR2) signaling in PAH is a promising alternative that could prevent and reverse pulmonary vascular remodeling. BMPR2 mutations have been identified in >70% of familial and roughly 15% of sporadic PAH cases. Wingless (Wnt) are a family of secreted glycoproteins with varying expression patterns and a range of functions, Wnt signaling pathway is divided into canonical signaling pathway and non-canonical signaling pathway. A recent study reports that interaction between BMP and Wnt closely associated with lung development, those cascade coordination regulation stem cell fate which determine lung branching morphogenes. The promoting effect of BMPR2 on proliferation, survival, and motility of endothelial cells was through recruiting Wnts signaling pathway, the interaction between BMP and Wnt closely associated with lung development.Therefore, in this review, we outline the latest advances of BMP and Wnt signaling pathway in the pathogenesis of PAH and disease progression.
Collapse
Affiliation(s)
- Zhihong Xin
- Department of Pediatrics, The Second Hospital, Cheeloo College of Medicine, Shandong University
| | - Junfu Wang
- Clinical laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University
| | - Susu Li
- College of pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, 271000, China
| | - Chao Sun
- Institute of Medical Science, The Second Hospital, Cheeloo College of Medicine, Shandong University, No. 247, Beiyuan Dajie, Jinan, 250033, P.R. China
| | - Wan Jiang
- Institute of Medical Science, The Second Hospital, Cheeloo College of Medicine, Shandong University, No. 247, Beiyuan Dajie, Jinan, 250033, P.R. China
| | - Qian Xin
- Institute of Medical Science, The Second Hospital, Cheeloo College of Medicine, Shandong University, No. 247, Beiyuan Dajie, Jinan, 250033, P.R. China
| | - Jue Wang
- Institute of Medical Science, The Second Hospital, Cheeloo College of Medicine, Shandong University, No. 247, Beiyuan Dajie, Jinan, 250033, P.R. China
| | - Tonggnag Qi
- Institute of Medical Science, The Second Hospital, Cheeloo College of Medicine, Shandong University, No. 247, Beiyuan Dajie, Jinan, 250033, P.R. China
| | - Kailin Li
- Institute of Medical Science, The Second Hospital, Cheeloo College of Medicine, Shandong University, No. 247, Beiyuan Dajie, Jinan, 250033, P.R. China
| | - Zhaohua Zhang
- Department of Pediatrics, The Second Hospital, Cheeloo College of Medicine, Shandong University
| | - Yun Luan
- Institute of Medical Science, The Second Hospital, Cheeloo College of Medicine, Shandong University, No. 247, Beiyuan Dajie, Jinan, 250033, P.R. China
| |
Collapse
|
5
|
Zhu Y, Zhang Q, Yan X, Liu L, Zhai C, Wang Q, Chai L, Li M. Ubiquitin-specific protease 7 mediates platelet-derived growth factor-induced pulmonary arterial smooth muscle cells proliferation. Pulm Circ 2021; 11:20458940211046131. [PMID: 34552711 PMCID: PMC8451001 DOI: 10.1177/20458940211046131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 08/25/2021] [Indexed: 11/15/2022] Open
Abstract
Pulmonary arterial hypertension is a devastating pulmonary vascular disease, in which the pathogenesis is complicated and unclear. Pulmonary arterial smooth muscle cells (PASMCs) proliferation is a key pathological feature of pulmonary arterial hypertension. It has been shown that ubiquitin-specific protease 7 (USP7) is involved in cancer cell proliferation via deubiquitinating and stabilizing E3 ubiquitin ligase mouse double minute 2 (MDM2). However, the effect of USP7 and MDM2 on platelet-derived growth factor (PDGF)-induced PASMCs proliferation is uncertain. This study aims to explore this issue. Our results indicated that PDGF up-regulated USP7 protein expression and stimulated PASMCs proliferation; this was accompanied with the increase of MDM2, forkhead box O4 (FoxO4) reduction and elevation of CyclinD1. While prior transfection of USP7 siRNA blocked PDGF-induced MDM2 up-regulation, FoxO4 down-regulation, increase of CyclinD1 and cell proliferation. Pre-depletion of MDM2 by siRNA transfection reversed PDGF-induced reduction of FoxO4, up-regulation of CyclinD1 and PASMCs proliferation. Furthermore, pre-treatment of cells with proteasome inhibitor MG-132 also abolished PDGF-induced FoxO4 reduction, CyclinD1 elevation and cell proliferation. Our study suggests that USP7 up-regulates MDM2, which facilitates FoxO4 ubiquitinated degradation, and subsequently increases the expression of CyclinD1 to mediate PDGF-induced PASMCs proliferation.
Collapse
Affiliation(s)
- Yanting Zhu
- Department of Respiratory Medicine, the First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, People's Republic of China.,Center of Nephropathy and Hemodialysis, Shaanxi Provincial People's Hospital, Xi'an, People's Republic of China
| | - Qianqian Zhang
- Department of Respiratory Medicine, the First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, People's Republic of China
| | - Xin Yan
- Department of Respiratory Medicine, the First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, People's Republic of China
| | - Lu Liu
- Department of Respiratory Medicine, the First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, People's Republic of China
| | - Cui Zhai
- Department of Respiratory Medicine, the First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, People's Republic of China
| | - Qingting Wang
- Department of Respiratory Medicine, the First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, People's Republic of China
| | - Limin Chai
- Department of Respiratory Medicine, the First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, People's Republic of China
| | - Manxiang Li
- Department of Respiratory Medicine, the First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, People's Republic of China
| |
Collapse
|
6
|
Kreidy M, Al-Hilli A, Yachoui R, Resnick J. Severe but reversible pulmonary hypertension in scleromyxedema and multiple myeloma: a case report. BMC Pulm Med 2020; 20:8. [PMID: 31918690 PMCID: PMC6953266 DOI: 10.1186/s12890-019-1020-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 12/06/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Scleromyxedema is a progressive, systemic connective tissue disorder characterized by fibro-mucous skin lesions and increased serum monoclonal immunoglobulin levels. Pulmonary involvement occurs in a subset of patients, though the overall prevalence of pulmonary lesions in scleromyxedema is unknown. Since pulmonary hypertension presumably occurs in these patients due to disease progression and development of additional conditions, treatment of the underlying plasma cell dyscrasia and connective tissue disorder may improve pulmonary hypertension symptoms. CASE PRESENTATION An elderly patient with scleromyxedema developed pulmonary hypertension refractory to vasodilator and diuretic therapy and subsequently multiple myeloma that responded to a combination therapy of bortezomib, cyclophosphamide, and dexamethasone treatment. CONCLUSIONS Treatment of the underlying disease(s) that contributed to pulmonary hypertension development with anti-neoplastic agents like bortezomib may improve cardiopulmonary symptoms secondary to reducing abnormal blood cell counts and paraprotein levels.
Collapse
Affiliation(s)
- Mazen Kreidy
- Department of Pulmonary and Critical Care Medicine, Marshfield Clinic, Marshfield, WI USA
- Present affiliation: Christiana Care Health System, PO Box 1668, Wilmington, DE 19899 USA
| | - Ali Al-Hilli
- Department of Internal Medicine, Marshfield Clinic, Marshfield, WI USA
| | - Ralph Yachoui
- Department of Rheumatology, Ronald Reagan UCLA Medical Center, Santa Monica, California, USA
| | - Jeffrey Resnick
- Department of Pathology, Marshfield Clinic, Marshfield, WI USA
| |
Collapse
|
7
|
Wade BE, Zhao J, Ma J, Hart CM, Sutliff RL. Hypoxia-induced alterations in the lung ubiquitin proteasome system during pulmonary hypertension pathogenesis. Pulm Circ 2018; 8:2045894018788267. [PMID: 29927354 PMCID: PMC6146334 DOI: 10.1177/2045894018788267] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Pulmonary hypertension (PH) is a clinical disorder characterized by sustained
increases in pulmonary vascular resistance and pressure that can lead to right
ventricular (RV) hypertrophy and ultimately RV failure and death. The molecular
pathogenesis of PH remains incompletely defined, and existing treatments are
associated with suboptimal outcomes and persistent morbidity and mortality.
Reports have suggested a role for the ubiquitin proteasome system (UPS) in PH,
but the extent of UPS-mediated non-proteolytic protein alterations during PH
pathogenesis has not been previously defined. To further examine UPS
alterations, the current study employed C57BL/6J mice exposed to normoxia or
hypoxia for 3 weeks. Lung protein ubiquitination was evaluated by mass
spectrometry to identify differentially ubiquitinated proteins relative to
normoxic controls. Hypoxia stimulated differential ubiquitination of 198
peptides within 131 proteins (p < 0.05). These proteins were
screened to identify candidates within pathways involved in PH pathogenesis.
Some 51.9% of the differentially ubiquitinated proteins were implicated in at
least one known pathway contributing to PH pathogenesis, and 13% were involved
in three or more PH pathways. Anxa2, App, Jak1, Lmna, Pdcd6ip, Prkch1, and Ywhah
were identified as mediators in PH pathways that undergo differential
ubiquitination during PH pathogenesis. To our knowledge, this is the first study
to report global changes in protein ubiquitination in the lung during PH
pathogenesis. These findings suggest signaling nodes that are dynamically
regulated by the UPS during PH pathogenesis. Further exploration of these
differentially ubiquitinated proteins and related pathways can provide new
insights into the role of the UPS in PH pathogenesis.
Collapse
Affiliation(s)
- Brandy E Wade
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Atlanta Veterans' Affairs and Emory University Medical Centers, Decatur, Georgia, USA
| | - Jingru Zhao
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Atlanta Veterans' Affairs and Emory University Medical Centers, Decatur, Georgia, USA
| | - Jing Ma
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Atlanta Veterans' Affairs and Emory University Medical Centers, Decatur, Georgia, USA
| | - C Michael Hart
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Atlanta Veterans' Affairs and Emory University Medical Centers, Decatur, Georgia, USA
| | - Roy L Sutliff
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Atlanta Veterans' Affairs and Emory University Medical Centers, Decatur, Georgia, USA
| |
Collapse
|
8
|
Zhang J, Lu W, Chen Y, Jiang Q, Yang K, Li M, Wang Z, Duan X, Xu L, Tang H, Sun D, Wang J. Bortezomib alleviates experimental pulmonary hypertension by regulating intracellular calcium homeostasis in PASMCs. Am J Physiol Cell Physiol 2016; 311:C482-97. [PMID: 27413173 PMCID: PMC5129762 DOI: 10.1152/ajpcell.00324.2015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 06/27/2016] [Indexed: 01/18/2023]
Abstract
The ubiquitin-proteasome system is considered to be the key regulator of protein degradation. Bortezomib (BTZ) is the first proteasome inhibitor approved by the US Food and Drug Administration for treatment of relapsed multiple myeloma and mantle cell lymphoma. Recently, BTZ treatment was reported to inhibit right ventricular hypertrophy and vascular remodeling in hypoxia-exposed and monocrotaline-injected rats. However, the underlying mechanisms remain poorly understood. We previously confirmed that hypoxia-elevated basal intracellular Ca(2+) concentration ([Ca(2+)]i) and store-operated Ca(2+) entry (SOCE) in pulmonary artery smooth muscle cells (PASMCs) are involved in pulmonary vascular remodeling. In this study we aim to determine whether BTZ attenuates the hypoxia-induced elevation of [Ca(2+)] in PASMCs and the signaling pathway involved in this mechanism. Our results showed that 1) in hypoxia- and monocrotaline-induced rat pulmonary hypertension (PH) models, BTZ markedly attenuated the development and progression of PH, 2) BTZ inhibited the hypoxia-induced increase in cell proliferation, basal [Ca(2+)]i, and SOCE in PASMCs, and 3) BTZ significantly normalized the hypoxia-upregulated expression of hypoxia-inducible factor-1α, bone morphogenetic protein 4, canonical transient receptor potential isoforms 1 and 6, and the hypoxia-downregulated expression of peroxisome proliferator-activated receptor-γ in rat distal pulmonary arteries and PASMCs. These results indicate that BTZ exerts its protective role in the development of PH potentially by inhibiting the canonical transient receptor potential-SOCE-[Ca(2+)]i signaling axis in PASMCs.
Collapse
Affiliation(s)
- Jun Zhang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wenju Lu
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yuqin Chen
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Qian Jiang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Kai Yang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Meichan Li
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ziyi Wang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xin Duan
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; and
| | - Lei Xu
- Division of Pulmonary and Critical Care Medicine, Affiliated Hospital of Inner Mongolia Medical University, Huhhot, Inner Mongolia, China
| | - Haiyang Tang
- Division of Translational and Regenerative Medicine, Department of Medicine, The University of Arizona, Tucson, Arizona
| | - Dejun Sun
- Division of Pulmonary Medicine, The People's Hospital of Inner Mongolia, Hohhot, Inner Mongolia, China
| | - Jian Wang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China; Division of Translational and Regenerative Medicine, Department of Medicine, The University of Arizona, Tucson, Arizona; Division of Pulmonary Medicine, The People's Hospital of Inner Mongolia, Hohhot, Inner Mongolia, China;
| |
Collapse
|