1
|
El-Sayed SM, Ahmed HH, Aglan HA, Naguib MM, Mohamed MR. Preconditioning of bone marrow mesenchymal stem cells with sodium hydrosulfide enhances their therapeutic potential in type II collagen-induced arthritis rat model. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04222-8. [PMID: 40366399 DOI: 10.1007/s00210-025-04222-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025]
Abstract
This study was conducted to evaluate the impact of sodium hydrogen sulfide (NaHS) on the therapeutic efficacy of bone marrow mesenchymal stem cells (BM-MSCs) in the treatment of collagen-induced arthritis (CIA) rats. MSCs were isolated and cultured from rat bone marrow, and their characteristics were determined. The CIA model was induced in rats by intradermal injections of type II collagen on days 0 and 21. A variety of treatments were administered, including naproxen, BM-MSCs, BM-MSC-conditioned media, NaHS, BM-MSCs preconditioned with NaHS, and BM-MSCs preconditioned with NaHS-conditioned media. The infused BM-MSCs homed to the bone trabeculae and cartilage of the knee joint, leading to significant improvements in gait scores and a reduction in paw withdrawal frequency (PWF). Treatment with BM-MSCs and NaHS also significantly suppressed serum levels of CRP, RF, and 14-3-3η, while downregulating TNF-α gene expression and MMP-1 protein levels in the synovial membrane. Histopathological analysis confirmed these biochemical and molecular genetic findings. Notably, CIA rats treated with BM-MSCs preconditioned with NaHS showed the most significant improvements, with outcomes closely resembling those of healthy controls. This study concludes that NaHS enhances the therapeutic efficacy of BM-MSC therapy for rheumatoid arthritis (RA) by augmenting their anti-inflammatory, immunomodulatory, and regenerative properties.
Collapse
Affiliation(s)
- Sara M El-Sayed
- Biochemistry Department, Faculty of Science, Ain Shams University, P.O. 11566, Cairo, Egypt
| | - Hanaa H Ahmed
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
- Stem Cells Lab, Center of Excellence for Advanced Sciences, National Research Centre, Giza, Egypt
| | - Hadeer A Aglan
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
- Stem Cells Lab, Center of Excellence for Advanced Sciences, National Research Centre, Giza, Egypt
| | - Mohamed M Naguib
- Biochemistry Department, Faculty of Science, Ain Shams University, P.O. 11566, Cairo, Egypt
| | - Mohamed R Mohamed
- Biochemistry Department, Faculty of Science, Ain Shams University, P.O. 11566, Cairo, Egypt.
| |
Collapse
|
2
|
Moghaddam MZ, Mousavi MJ, Ghotloo S. Cell-based therapies for the treatment of rheumatoid arthritis. Immun Inflamm Dis 2023; 11:e1091. [PMID: 38018576 PMCID: PMC10664399 DOI: 10.1002/iid3.1091] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 11/30/2023] Open
Abstract
Autoimmune diseases, including rheumatoid arthritis that is the most prevalent rheumatic autoimmune disorder, affect autologous connective tissues caused by the breakdown of the self-tolerance mechanisms of the immune system. During the last two decades, cell-based therapy, including stem cells and none-stem cells has been increasingly considered as a therapeutic option in various diseases. This is partly due to the unique properties of stem cells that divide and differentiate from the specialized cells in the damaged tissue. Moreover, stem cells and none-stem cells, impose immunomodulatory properties affecting the diseases caused by immunological abnormalities such as rheumatic autoimmune disorders. In the present review, the efficacy of cell-based therapy with four main types of stem cells, including mesenchymal stem cells, hematopoietic stem cells, embryonic stem cells, and human amniotic membrane cells, as well as none-stem cells, including regulatory T cells, chimeric antigen receptor T cells, and tolerogenic dendritic cells will be evaluated. Moreover, other related issues, including safety, changes in immunological parameters, suitable choice of stem cell and none-stem cell origin, conditioning regimen, limitations, and complications will be discussed.
Collapse
Affiliation(s)
| | - Mohammad Javad Mousavi
- Department of HematologyFaculty of Allied Medicine, Bushehr University of Medical SciencesBushehrIran
| | - Somayeh Ghotloo
- Autoimmune Diseases Research CenterKashan University of Medical SciencesKashanIran
- Department of Clinical Laboratory SciencesKashan University of Medical SciencesKashanIran
| |
Collapse
|
3
|
Combination Therapy of Mesenchymal Stromal Cells and Interleukin-4 Attenuates Rheumatoid Arthritis in a Collagen-Induced Murine Model. Cells 2019; 8:cells8080823. [PMID: 31382595 PMCID: PMC6721641 DOI: 10.3390/cells8080823] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 02/05/2023] Open
Abstract
Rheumatoid arthritis (RA) is a disease of the joints that causes decreased quality of life. Mesenchymal stromal cells (MSCs) have immunosuppressive properties, with possible use in the treatment of RA. Similarly, interleukin (IL)-4 has been shown as a potential RA treatment. However, their combination has not been explored before. Therefore, this study aimed to investigate the effect of a combination therapy of MSCs and IL-4 in the treatment of RA, using a murine collagen-induced arthritis (CIA) model. Arthritis was induced in Balb/c mice by two intradermal injections of type II collagen (CII), at days 0 and 21. CIA mice were randomly assigned to four groups; group I received an intravenous injection of mouse bone marrow-derived MSCs, while group II received an intraperitoneal injection of IL-4. Group III received a combined treatment of MSC and IL-4, while group IV served as a CIA diseased control group receiving phosphate buffer saline (PBS). A fifth group of healthy mice served as the normal healthy control. To assess changes induced by different treatments, levels of RA-associated inflammatory cytokines and biomarkers were measured in the serum, knee joints, and synovial tissue, using ELISA and Real Time-qPCR. Histopathological features of knee joints were analyzed for all groups. Results showed that combined MSC and IL-4 treatment alleviated signs of synovitis in CIA mice, reverting to the values of healthy controls. This was evident by the decrease in the levels of rheumatic factor (RF), C-reactive protein (CRP) and anti-nuclear antibodies (ANA) by 64, 80, and 71%, respectively, compared to the diseased group. Moreover, tumor necrosis factor-alpha (TNF- α) and monocyte chemoattractant protein-1 (MCP-1) levels decreased by 63 and 68%, respectively. Similarly, our gene expression data showed improvement in mice receiving combined therapy compared to other groups receiving single treatment, where cartilage oligomeric matrix protein (Comp), tissue inhibitor metalloproteinase-1 (Timp1), matrix metalloproteinase1 (Mmp-1), and IL-1 receptor (Il-1r) gene expression levels decreased by 75, 70, and 78%, respectively. Collectively, treatment with a combined therapy of MSC and IL-4 might have an efficient therapeutic effect on arthritis. Thus, further studies are needed to assess the potential of different MSC populations in conjugation with IL-4 in the treatment of experimental arthritis.
Collapse
|
4
|
Xie X, Liu H, Wu J, Chen Y, Yu Z, De Isla N, He X, Li Y. Rat BMSC infusion was unable to ameliorate inflammatory injuries in tissues of mice with LPS-induced endotoxemia. Biomed Mater Eng 2017; 28:S129-S138. [DOI: 10.3233/bme-171634] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Xiaolin Xie
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Hanhan Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Jinhua Wu
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Yun Chen
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Zhui Yu
- Unit of Critical Care Medicine of Renmin Hospital, Wuhan University, Wuhan 430071, China
| | - Natalia De Isla
- UMR CNRS 7561, Faculté de Médecine, Lorraine Université, Vandoeuvre-lès-Nancy, France
| | - Xiaohua He
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Yinping Li
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| |
Collapse
|
5
|
Impact of bone marrow-derived mesenchymal stem cells on remodeling the lung injury induced by lipopolysaccharides in mice. Future Sci OA 2017; 3:FSO162. [PMID: 28344826 PMCID: PMC5351512 DOI: 10.4155/fsoa-2016-0036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 11/08/2016] [Indexed: 12/17/2022] Open
Abstract
AIM This study evaluated the potential of bone marrow derived mesenchymal stem cells (MSCs) to regulate cytokines and remodel the lung induced by lipopolysaccharide (LPS; O-antigen). MATERIALS & METHODS A group of mice (n = 21) was inoculated intraperitoneally with one dose 0.1 ml containing 0.025 mg LPS/mouse, and another treated intravenously with one dose of labeling bone marrow derived MSCs at 7.5 × 105 cell/mouse 4 h after LPS injection. All animals were sacrificed on the 1st, 7th and 14th days post-injection. RESULTS MSCs increased the level of IL-10 with suppression of TNF-α, decrease of collagen fibers and renewal of alveolar type I cells, together with lung tissue remodeling. CONCLUSION MSCs were shown to modulate inflammatory cytokines (TNF-α and IL-10) and to differentiate into alveolar type I cells, which prevented fibrosis in lung tissue from LPS-treated mice.
Collapse
|
6
|
Mina-Osorio P. Stem Cell Therapy in the Treatment of Rheumatic Diseases and Application in the Treatment of Systemic Lupus Erythematosus. NEXT-GENERATION THERAPIES AND TECHNOLOGIES FOR IMMUNE-MEDIATED INFLAMMATORY DISEASES 2017. [PMCID: PMC7123283 DOI: 10.1007/978-3-319-42252-7_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Current systemic therapies help to improve the symptoms and quality of life for patients with severe life-threatening rheumatic diseases but provide no curative treatment. For the past two decades, preclinical and clinical studies of stem cell transplantation (SCT) have demonstrated tremendous therapeutic potential for patients with autoimmune rheumatic diseases. Herein, the current advances on stem cell therapies, both in animal models and clinical studies, are discussed, with particular attention on systemic lupus erythematosus (SLE). Despite extensive research and promising data, our knowledge on mechanisms of action for SCT, its administration route and timing, the optimal dose of cells, the cells’ fate and distribution in vivo, and the safety and efficacy of the treatments remains limited. Further research on stem cell biology is required to ensure that therapeutic safety and efficacy, as observed in animal models, can be successfully translated in clinical trials. Current understanding, limitations, and future directions for SCT with respect to rheumatic diseases are also discussed.
Collapse
|
7
|
Combined effect of bone marrow derived mesenchymal stem cells and nitric oxide inducer on injured gastric mucosa in a rat model. Tissue Cell 2016; 48:644-652. [PMID: 27751517 DOI: 10.1016/j.tice.2016.09.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 09/23/2016] [Accepted: 09/26/2016] [Indexed: 12/25/2022]
|
8
|
Mak J, Jablonski CL, Leonard CA, Dunn JF, Raharjo E, Matyas JR, Biernaskie J, Krawetz RJ. Intra-articular injection of synovial mesenchymal stem cells improves cartilage repair in a mouse injury model. Sci Rep 2016; 6:23076. [PMID: 26983696 PMCID: PMC4794799 DOI: 10.1038/srep23076] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 02/23/2016] [Indexed: 12/20/2022] Open
Abstract
Controversy remains whether articular cartilage has an endogenous stem/progenitor cell population, since its poor healing capacity after injury can lead to diseases such as osteoarthritis. In the joint environment there are mesenchymal stem/progenitor cells (MSCs) in the synovial membrane and synovial fluid that can differentiate into cartilage, but it is still under debate if these cells contribute to cartilage repair in vivo. In this study, we isolated a Sca-1 positive, chondrogenesis capable population of mouse synovial MSCs from C57BL6 and MRL/MpJ “super-healer” strains. Intra-articular injection of Sca-1 + GFP + synovial cells from C57BL6 or MRL/MpJ into C57BL6 mice following cartilage injury led to increased cartilage repair by 4 weeks after injury. GFP expression was detected in the injury site at 2 weeks, but not 4 weeks after injury. These results suggest that synovial stem/progenitor cells, regardless of strain background, have beneficial effects when injected into an injured joint. MSCs derived from MRL/MpJ mice did not promote an increased repair capacity compared to MSCs derived from non-healing C57BL6 controls; however, MRL/MpJ MSCs were observed within the defect area at the time points examined, while C57BL6 MSCs were not.
Collapse
Affiliation(s)
- J Mak
- McCaig Institute for Bone &Joint Health, University of Calgary, Calgary, AB, Canada
| | - C L Jablonski
- McCaig Institute for Bone &Joint Health, University of Calgary, Calgary, AB, Canada
| | - C A Leonard
- McCaig Institute for Bone &Joint Health, University of Calgary, Calgary, AB, Canada.,University of Calgary, Department of Surgery, Calgary, AB, Canada
| | - J F Dunn
- McCaig Institute for Bone &Joint Health, University of Calgary, Calgary, AB, Canada.,University of Calgary, Department of Radiology, Calgary, AB, Canada.,Experimental Imaging Centre, University of Calgary, Calgary, AB, Canada
| | - E Raharjo
- University of Calgary, Department of Comparative Biology and Experimental Medicine, Calgary, AB, Canada
| | - J R Matyas
- McCaig Institute for Bone &Joint Health, University of Calgary, Calgary, AB, Canada.,University of Calgary, Department of Comparative Biology and Experimental Medicine, Calgary, AB, Canada
| | - J Biernaskie
- University of Calgary, Department of Surgery, Calgary, AB, Canada.,University of Calgary, Department of Comparative Biology and Experimental Medicine, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - R J Krawetz
- McCaig Institute for Bone &Joint Health, University of Calgary, Calgary, AB, Canada.,University of Calgary, Department of Surgery, Calgary, AB, Canada.,University of Calgary, Department of Anatomy and Cell Biology, Calgary, AB, Canada
| |
Collapse
|
9
|
Hynes K, Bright R, Proudman S, Haynes D, Gronthos S, Bartold M. Immunomodulatory properties of mesenchymal stem cell in experimental arthritis in rat and mouse models: A systematic review. Semin Arthritis Rheum 2016; 46:1-19. [PMID: 27105756 DOI: 10.1016/j.semarthrit.2016.02.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 02/18/2016] [Accepted: 02/29/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND Despite recent advances in the treatment of arthritis with the development of disease-modifying antirheumatic drugs, 30% of patients still fail to respond to treatment. Given the potent anti-inflammatory and immunomodulatory properties of mesenchymal stem cells (MSC) and their ability to repair damaged cartilage, bone, and tendons, it has been proposed that MSC could be ideal for cell-based treatment of arthritis. OBJECTIVE This systematic review investigates evidence from studies on the therapeutic efficacy of MSC in rodent models of arthritis. METHODS PubMed, Embase, MEDLINE, and Wed of Science were searched to June 2015 for quantitative studies examining the outcome of treating animal models of arthritis with MSC. Inclusion criteria were as follows: administration of mesenchymal stem as a treatment approach for arthritis; animal models only; and published in English. We followed the preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines. RESULTS The literature search identified 30 studies which met the inclusion criteria. A range of MSC populations were assessed in various rodent models of arthritis. Of these, 19 demonstrated positive outcomes while 11 studies failed to demonstrate positive effects. Owing to the extensive variation in the experimental design, cells investigated and the outcome measures described in the manuscripts, no meta-analysis was possible. Furthermore, the numerical values for the primary outcome measure of clinical paw score were frequently not published in the manuscripts analyzed, as they were only illustrated in graphical form. CONCLUSIONS Numerous studies have investigated the utility of a range of MSC populations in the treatment of experimental arthritis. The results obtained from these studies have been highly inconsistent, with multiple studies identifying a statistically significant improvement in arthritis scores after treatment with MSC, while other studies identified a statistically significant deterioration in arthritis scores and thirdly some studies showed no effect. Further studies using standardized protocols and outcome measures are needed to determine fully the potential of MSC populations in the treatment of experimental arthritis.
Collapse
Affiliation(s)
- Kim Hynes
- Colgate Australian Dental Research Centre, Dental School, University of Adelaide, Adelaide, SA, Australia; School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, SA, Australia; South Australian Health and Medical Research Institute, Adelaide, SA, Australia.
| | - Richard Bright
- Colgate Australian Dental Research Centre, Dental School, University of Adelaide, Adelaide, SA, Australia
| | - Susanna Proudman
- Rheumatology Unit, Royal Adelaide Hospital and Discipline of Medicine, University of Adelaide, SA, Australia
| | - David Haynes
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Stan Gronthos
- School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, SA, Australia; South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Mark Bartold
- Colgate Australian Dental Research Centre, Dental School, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
10
|
McDonald CA, Oehme D, Pham Y, Kelly K, Itescu S, Gibbon A, Jenkin G. Evaluation of the safety and tolerability of a high-dose intravenous infusion of allogeneic mesenchymal precursor cells. Cytotherapy 2015; 17:1178-87. [DOI: 10.1016/j.jcyt.2015.05.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Revised: 04/23/2015] [Accepted: 05/14/2015] [Indexed: 12/13/2022]
|
11
|
Reynolds G, Cooles FAH, Isaacs JD, Hilkens CMU. Emerging immunotherapies for rheumatoid arthritis. Hum Vaccin Immunother 2014; 10:822-37. [PMID: 24535556 DOI: 10.4161/hv.27910] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Novel treatments in development for rheumatoid arthritis target 3 broad areas: cytokines, cells, and signaling pathways. Therapies from each domain share common advantages (for example previously demonstrated efficacy, potential long-term immunomodulation, and oral administration respectively) that have stimulated research in each area but also common obstacles to their development. In this review recent progress in each area will be discussed alongside the factors that have impeded their path to clinical use.
Collapse
Affiliation(s)
- Gary Reynolds
- Institute of Cellular Medicine; Musculoskeletal Research Group; Newcastle University; Newcastle upon Tyne, Tyne and Wear UK
| | - Faye A H Cooles
- Institute of Cellular Medicine; Musculoskeletal Research Group; Newcastle University; Newcastle upon Tyne, Tyne and Wear UK
| | - John D Isaacs
- Institute of Cellular Medicine; Musculoskeletal Research Group; Newcastle University; Newcastle upon Tyne, Tyne & Wear UK
| | - Catharien M U Hilkens
- Institute of Cellular Medicine; Musculoskeletal Research Group; Newcastle University; Newcastle upon Tyne, Tyne & Wear UK
| |
Collapse
|