1
|
Li Z, Jiang D, Liu F, Li Y. Involvement of ZDHHC9 in lung adenocarcinoma: regulation of PD-L1 stability via palmitoylation. In Vitro Cell Dev Biol Anim 2023; 59:193-203. [PMID: 37002491 DOI: 10.1007/s11626-023-00755-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/20/2023] [Indexed: 04/03/2023]
Abstract
Palmitoylation is a post-translational modification occurring on cysteine residues, which process is catalyzed by a family of zinc finger Asp-His-His-Cys (DHHC) domain-containing (ZDHHC) protein acyltransferases. As a family member, ZDHHC9 plays a crucial role in varied malignancies by regulating protein stability via protein substrate palmitoylation. Based on the bioinformatic analysis of GEO gene microarray GSE75037 (|log2 fold change|> 1, P < 0.05), ZDHHC9 was defined as a significantly upregulated gene in lung adenocarcinoma (LUAD), which was also confirmed in our collected clinical specimens. It is necessary to explore the biological function of ZDHHC9 in LUAD cells. The follow-up functional experiments revealed that ZDHHC9 deficiency inhibited proliferation, migration, and invasion, while stimulated apoptosis in HCC827 cells. Besides, these malignant phenotypes could be accelerated by ZDHHC9 overexpression in A549. Moreover, we revealed that ZDHHC9 knockdown could promote PD-L1 protein degradation by reducing its palmitoylation level. The reduction of PD-L1 protein level could enhance anti-tumor immunity and inhibit the growth of LUAD cells. Therefore, our study uncovers the tumor-promoting role of ZDHHC9 in LUAD via regulating PD-L1 stability through palmitoylation, highlighting ZDHHC9 as a novel therapeutic target for LUAD.
Collapse
|
2
|
Ko PJ, Dixon SJ. Protein palmitoylation and cancer. EMBO Rep 2018; 19:embr.201846666. [PMID: 30232163 DOI: 10.15252/embr.201846666] [Citation(s) in RCA: 254] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 07/24/2018] [Accepted: 08/16/2018] [Indexed: 12/11/2022] Open
Abstract
Protein S-palmitoylation is a reversible post-translational modification that alters the localization, stability, and function of hundreds of proteins in the cell. S-palmitoylation is essential for the function of both oncogenes (e.g., NRAS and EGFR) and tumor suppressors (e.g., SCRIB, melanocortin 1 receptor). In mammalian cells, the thioesterification of palmitate to internal cysteine residues is catalyzed by 23 Asp-His-His-Cys (DHHC)-family palmitoyl S-acyltransferases while the removal of palmitate is catalyzed by serine hydrolases, including acyl-protein thioesterases (APTs). These enzymes modulate the function of important oncogenes and tumor suppressors and often display altered expression patterns in cancer. Targeting S-palmitoylation or the enzymes responsible for palmitoylation dynamics may therefore represent a candidate therapeutic strategy for certain cancers.
Collapse
Affiliation(s)
- Pin-Joe Ko
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Scott J Dixon
- Department of Biology, Stanford University, Stanford, CA, USA
| |
Collapse
|
4
|
Liu H, Pan Y, Meng S, Zhang W, Zhou F. Current treatment options of T cell-associated immunotherapy in multiple myeloma. Clin Exp Med 2017; 17:431-439. [PMID: 28120217 DOI: 10.1007/s10238-017-0450-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 12/15/2016] [Indexed: 11/29/2022]
Abstract
Multiple myeloma (MM) is a complex disease and is presently an incurable malignant plasma cell tumor. Although the introduction of proteasome inhibitor and the immunomodulators markedly improved the effect of myeloma therapy, most patients still suffer from relapse even with an initially effective therapy. Accumulating evidence suggests that immunotherapy is a promising option in treating MM. And T cell plays crucial role through inducing sustained immune response in vivo in the immunotherapy of tumors. In this article, we will discuss progress of several T cell-based immunotherapies with insight into how they eradicate myeloma cells and their disadvantages.
Collapse
Affiliation(s)
- Hailing Liu
- Department of Clinical Hematology, Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Yunbao Pan
- Department of Pathology, Affiliated Hospital, Wuxi Medical School, Jiangnan University, Wuxi, 214062, Jiangsu, China
| | - Shan Meng
- Department of Clinical Hematology, Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Wanggang Zhang
- Department of Clinical Hematology, Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Fuling Zhou
- Department of Clinical Hematology, Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, 710004, China.
- Department of Clinical Hematology, Zhongnan Hospital, Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071, Hubei, China.
| |
Collapse
|
5
|
Lu C, Meng S, Jin Y, Zhang W, Li Z, Wang F, Wang-Johanning F, Wei Y, Liu H, Tu H, Su D, He A, Cao X, Zhou F. A novel multi-epitope vaccine from MMSA-1 and DKK1 for multiple myeloma immunotherapy. Br J Haematol 2017; 178:413-426. [PMID: 28508448 DOI: 10.1111/bjh.14686] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 02/02/2017] [Indexed: 01/16/2023]
Abstract
The identification of novel tumour-associated antigens is urgently needed to improve the efficacy of immunotherapy for multiple myeloma (MM). In this study, we identified a membrane protein MMSA-1 (multiple myeloma special antigen-1) that was specifically expressed in MM and exhibited significantly positive correlation with MM. We then identified HLA-A*0201-restricted MMSA-1 epitopes and tested their cytotoxic T lymphocyte (CTL) response. The MMSA-1 epitope SLSLLTIYV vaccine was shown to induce an obvious CTL response in vitro. To improve the immunotherapy, we constructed a multi-epitope peptide vaccine by combining epitopes derived from MMSA-1 and Dickkopf-1 (DKK1). The effector T cells induced by multi-epitope peptide vaccine-loaded dendritic cells lysed U266 cells more effectively than MMSA-1/DKK1 single-epitope vaccine. In myeloma-bearing severe combined immunodeficient mice, the multi-epitope vaccine improved the survival rate significantly compared with single-epitope vaccine. Consistently, multi-epitope vaccine decreased the tumour volume greatly and alleviated bone destruction. The frequencies of CD4+ and CD8+ T cells was significantly increased in mouse blood induced by the multi-epitope vaccine, indicating that it inhibits myeloma growth by changing T cell subsets and alleviating immune paralysis. This study identified a novel peptide from MMSA-1 and the multi-epitope vaccine will be used to establish appropriate individualized therapy for MM.
Collapse
Affiliation(s)
- Chenyang Lu
- Department of Clinical Haematology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Shan Meng
- Department of Clinical Haematology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yanxia Jin
- Department of Haematology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Wanggang Zhang
- Department of Clinical Haematology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zongfang Li
- National-local Joint Engineering Research Centre of Biodiagnostics & Biotherapy, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Fang Wang
- Department of Clinical Haematology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | | | - Yongchang Wei
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Hailing Liu
- Department of Clinical Haematology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Honglei Tu
- Department of Clinical Haematology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Dan Su
- Department of Clinical Haematology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Aili He
- Department of Clinical Haematology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xingmei Cao
- Department of Clinical Haematology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Fuling Zhou
- Department of Clinical Haematology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Haematology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|