1
|
Hanafy RM, Demian SR, Abou-Shamaa LA, Ghallab O, Osman EM. In-vitro Modulation of mTOR-HIF-1α Axis by TLR7/8 Agonist (Resiquimod) in B-Chronic Lymphocytic Leukemia. Indian J Hematol Blood Transfus 2023; 39:537-545. [PMID: 37786827 PMCID: PMC10542076 DOI: 10.1007/s12288-023-01649-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 03/20/2023] [Indexed: 10/04/2023] Open
Abstract
Targeting toll-like receptors (TLRs), via TLR agonists, has been implicated in the regulation of immunometabolism. B-chronic lymphocytic leukemia (B-CLL) represents a suitable model for B-cell derived malignancies with shifted metabolic adaptations. Several signaling pathways have been found to be critical in metabolic reprogramming of CLL, including mechanistic target of rapamycin- hypoxia inducible factor-1α (mTOR- HIF-1α) pathway, the main metabolic regulator of glycolysis. Here, we investigated the effect of TLR7/8 agonist (Resiquimod) on the expression of mTOR and HIF-1α in patients with CLL. B cells were purified using Rosettesep Human B cell Enrichment Cocktail (Stem cell Technologies, Vancouver, BC, Canada#15,024) from peripheral venous blood of CLL patients (n = 20) and healthy individuals (n = 15). Isolated B cells were then cultured in both presence and absence of Resiquimod. Gene expression of mTOR and HIF-1α were assessed using qRT-PCR. Resiquimod significantly decreased mTOR and HIF-1α gene expression in both CLL (p < 0.001and p < 0.001, respectively) and Normal B cells (p = 0.004 and p = 0.001, respectively). Resiquimod may reprogram immunometabolism of malignant B-CLL cells via down-regulation of key glycolytic metabolic actors, mTOR and HIF-1α genes. Accordingly, Resiquimod may be an adjuvant as a therapeutic tool for CLL, which needs to be studied further. Supplementary Information The online version contains supplementary material available at 10.1007/s12288-023-01649-y.
Collapse
Affiliation(s)
- Rana M. Hanafy
- Immunology and Allergy Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Soheir R. Demian
- Immunology and Allergy Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Lobna A. Abou-Shamaa
- Immunology and Allergy Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - O. Ghallab
- Internal Medicine Department (Hematology Unit), Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Eman M. Osman
- Immunology and Allergy Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| |
Collapse
|
2
|
Marques-Ramos A, Cervantes R. Expression of mTOR in normal and pathological conditions. Mol Cancer 2023; 22:112. [PMID: 37454139 PMCID: PMC10349476 DOI: 10.1186/s12943-023-01820-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/08/2023] [Indexed: 07/18/2023] Open
Abstract
The mechanistic/mammalian target of rapamycin (mTOR), a protein discovered in 1991, integrates a complex pathway with a key role in maintaining cellular homeostasis. By comprising two functionally distinct complexes, mTOR complex 1 (mTORC1) and mTORC2, it is a central cellular hub that integrates intra- and extracellular signals of energy, nutrient, and hormone availability, modulating the molecular responses to acquire a homeostatic state through the regulation of anabolic and catabolic processes. Accordingly, dysregulation of mTOR pathway has been implicated in a variety of human diseases. While major advances have been made regarding the regulators and effectors of mTOR signaling pathway, insights into the regulation of mTOR gene expression are beginning to emerge. Here, we present the current available data regarding the mTOR expression regulation at the level of transcription, translation and mRNA stability and systematize the current knowledge about the fluctuations of mTOR expression observed in several diseases, both cancerous and non-cancerous. In addition, we discuss whether mTOR expression changes can be used as a biomarker for diagnosis, disease progression, prognosis and/or response to therapeutics. We believe that our study will contribute for the implementation of new disease biomarkers based on mTOR as it gives an exhaustive perspective about the regulation of mTOR gene expression in both normal and pathological conditions.
Collapse
Affiliation(s)
- A Marques-Ramos
- H&TRC-Health & Technology Research Center, ESTeSL-Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal.
| | - R Cervantes
- H&TRC-Health & Technology Research Center, ESTeSL-Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal
- Public Health Research Centre, NOVA National School of Public Health, Universidade Nova de Lisboa, Lisbon, Portugal
- Comprehensive Health Research Center (CHRC), Lisbon, Portugal
| |
Collapse
|
3
|
Maurya N, Mohanty P, Panchal P, Shanmukhaiah C, Vundinti BR. Over expression of mTOR gene predicts overall survival in myelodysplastic syndromes. Mol Biol Rep 2023; 50:235-244. [PMID: 36322239 DOI: 10.1007/s11033-022-07973-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/21/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND Myelodysplastic syndromes (MDS) is defined as heterogenous disease, it contains heterogenous leukemic stem cells with various degree of cell differentiation. The perturbation of genes involved in myeloid progenitor cell growth, differentiation and proliferation lead to morphologic dysplasia, maturation arrest, ineffective hematopoiesis hence the cytopenias and propensity to develop into acute myeloid leukemia (AML). Heterogeneous subsets of MDS patients have been defined by their clinical and biologic abnormalities. These different features lead to the development of different prognostic system; however, these approaches are limited in predicting clinical course, and management of patients remains challenging given the uncertainty of the time course of disease progression. It is of importance to identify transcriptomic marker causing maturational and differentiation arrest which could help in understanding the pathogenesis of disease. METHODS AND RESULTS We have studied differential gene expression profiles (GEPs) in CD34 + marrow cells from myelodysplastic syndrome (MDS) patients (n = 14) and control CD34 + cells using Affymetrix Human Clariom S microarray with 20,000 well annotated genes. We found 4165 genes significantly (p < 0.05) differentially expressed in MDS. Using stringent bioinformatics analyses, we were able to identify few genes (MAPK8, JUNB, mTOR) which were differentially upregulated i.e. 5.39, 73.61 and 2.7 fold change observed in MDS than control and also validated (n = 60) these genes by RT - qPCR. Kaplan - Meier survival analysis indicated that MAPK8 and JUNB could be poor prognostic marker as patients with increased expression showed poor survival, whereas surprisingly mTOR increased expression proved to be good prognostic marker. The correlation analysis showed that the level of gene (MAPK8, JUNB, mTOR) expression was significantly (p ≤ 0.05) associated with frequency of genetic lesions. Interestingly the increased expression of MAPK8 was significantly accompanied with ASXL1 gene mutation. CONCLUSION Our study showed an elevation of TNF and AMPK signalling pathways in MDS. TNF signalling might be mediating the proliferative advantage to myeloid clonal cells (mutation carrying cells) over normal cells, whereas, AMPK signalling could be acting as protector against it (favouring normal cells). Hence it would be interesting to explore the functions and pathways associated with mTOR, AMPK, MAPK8 and JUNB in myelopoiesis related diseases like MDS.
Collapse
Affiliation(s)
- Nehakumari Maurya
- Department of Cytogenetics, ICMR-National Institute of Immunohematology, K.E.M. Hospital Campus, Mumbai, Maharashtra, India
| | - Purvi Mohanty
- Department of Cytogenetics, ICMR-National Institute of Immunohematology, K.E.M. Hospital Campus, Mumbai, Maharashtra, India
| | - Purvi Panchal
- Department of Cytogenetics, ICMR-National Institute of Immunohematology, K.E.M. Hospital Campus, Mumbai, Maharashtra, India
| | | | - Babu Rao Vundinti
- Department of Cytogenetics, ICMR-National Institute of Immunohematology, K.E.M. Hospital Campus, Mumbai, Maharashtra, India.
| |
Collapse
|
4
|
Toson B, Fortes IS, Roesler R, Andrade SF. Targeting Akt/PKB in pediatric tumors: A review from preclinical to clinical trials. Pharmacol Res 2022; 183:106403. [PMID: 35987481 DOI: 10.1016/j.phrs.2022.106403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/01/2022] [Accepted: 08/15/2022] [Indexed: 11/25/2022]
Abstract
The serine/threonine kinase Akt is a major player in the phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling pathway, and its modulation impacts multiple cellular processes such as growth, proliferation, and survival. Several abnormalities in this pathway have been documented over the years, and these alterations were shown to have great implications in tumorigenesis and resistance to chemotherapy. Thus, multiple Akt inhibitors have been developed and tested in adult tumors, and some of them are currently undergoing phase I, II, and III clinical trials for distinct cancers that arise during adulthood. Despite that, the impact of these inhibitors is still not fully understood in pediatric tumors, and Akt-specific targeting seems to be a promising approach to treat children affected by cancers. This review summarizes recent available evidence of Akt inhibitors in pediatric cancers, from both preclinical and clinical studies. In short, we demonstrate the impact that Akt inhibition provides in tumorigenesis, and we suggest targeting the PI3K/Akt/mTOR signaling pathway, alone or in combination with other inhibitors, is a feasible tool to achieve better outcomes in pediatric tumors.
Collapse
Affiliation(s)
- Bruno Toson
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Isadora S Fortes
- Pharmaceutical Synthesis Group (PHARSG), College of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Pharmaceutical Sciences Graduate Program, Federal University of Rio Grande do Sul (UFRGS), Av. Ipiranga, 2752, Porto Alegre, RS 90610-000, Brazil
| | - Rafael Roesler
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Saulo F Andrade
- Pharmaceutical Synthesis Group (PHARSG), College of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Pharmaceutical Sciences Graduate Program, Federal University of Rio Grande do Sul (UFRGS), Av. Ipiranga, 2752, Porto Alegre, RS 90610-000, Brazil.
| |
Collapse
|
5
|
The role of the PTEN/mTOR axis in clinical response of rectal cancer patients. Mol Biol Rep 2022; 49:8461-8472. [PMID: 35729481 DOI: 10.1007/s11033-022-07665-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/31/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Preoperative chemoradiotherapy has long been accepted as a method to improve survival and lifetime quality of rectal cancer patients. However, physiologic effects of these therapies largely depend on the resistance of cells to the radiation, type of chemotherapeutic agents and individual responses. As one of the signaling cascades involved in chemo- or radiation- resistance, the present study focused on several proteins involved in pTEN/Akt/mTOR pathway to explore their prognostic significance. MATERIALS AND METHODS Samples from advanced stage rectal cancer patients were analyzed to detect expression levels of pTEN/Akt/mTOR pathway related proteins pTEN, mLST8, REDD1, BNIP3, SAG and NOXA, together with p53, by RT-qPCR. Kaplan-Meier analysis was used to assess expression-survival relation and correlations among all proteins and clinicopathological features were statistically analyzed. RESULTS Except p53, none of the proteins showed prognostic significance. High p53 expression presented clear impact on overall survival and disease free survival. It was also significantly related to pathologic complete response. p53 showed high correlation to local recurrence as well. On the other hand, strong correlation was observed with PTEN expression and tumor response, but not with survival. High associations were also observed between mLST8/REDD1, PTEN and NOXA, confirming their role in the same cascade. CONCLUSION The contentious role of p53 as a prognostic biomarker in colorectal cancer was further affirmed, while PTEN and REDD1 could be suggested as potential candidates. Additionally, NOXA emerges as a conjunctive element for different signaling pathways.
Collapse
|
6
|
Silic-Benussi M, Sharova E, Ciccarese F, Cavallari I, Raimondi V, Urso L, Corradin A, Kotler H, Scattolin G, Buldini B, Francescato S, Basso G, Minuzzo SA, Indraccolo S, D'Agostino DM, Ciminale V. mTOR inhibition downregulates glucose-6-phosphate dehydrogenase and induces ROS-dependent death in T-cell acute lymphoblastic leukemia cells. Redox Biol 2022; 51:102268. [PMID: 35248829 PMCID: PMC8899410 DOI: 10.1016/j.redox.2022.102268] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 02/11/2022] [Indexed: 12/15/2022] Open
Affiliation(s)
| | | | | | | | - Vittoria Raimondi
- Department of Surgery, Oncology, and Gastroenterology, University of Padova, Padova, Italy
| | - Loredana Urso
- Veneto Institute of Oncology IOV - IRCCS, Padova, Italy; Department of Surgery, Oncology, and Gastroenterology, University of Padova, Padova, Italy
| | - Alberto Corradin
- Istituto Tecnico Industriale Statale "Alessandro Rossi", Vicenza, Italy
| | - Harel Kotler
- Department of Surgery, Oncology, and Gastroenterology, University of Padova, Padova, Italy
| | - Gloria Scattolin
- Department of Surgery, Oncology, and Gastroenterology, University of Padova, Padova, Italy
| | - Barbara Buldini
- Pediatric Hemato Oncology, Maternal and Child Health Department, University of Padova, Padova, Italy
| | - Samuela Francescato
- Pediatric Hemato Oncology, Maternal and Child Health Department, University of Padova, Padova, Italy
| | - Giuseppe Basso
- Pediatric Hemato Oncology, Maternal and Child Health Department, University of Padova, Padova, Italy; Italian Institute for Genomic Medicine, Turin, Italy
| | - Sonia A Minuzzo
- Department of Surgery, Oncology, and Gastroenterology, University of Padova, Padova, Italy
| | - Stefano Indraccolo
- Veneto Institute of Oncology IOV - IRCCS, Padova, Italy; Department of Surgery, Oncology, and Gastroenterology, University of Padova, Padova, Italy
| | - Donna M D'Agostino
- Veneto Institute of Oncology IOV - IRCCS, Padova, Italy; Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Vincenzo Ciminale
- Veneto Institute of Oncology IOV - IRCCS, Padova, Italy; Department of Surgery, Oncology, and Gastroenterology, University of Padova, Padova, Italy.
| |
Collapse
|
7
|
Sebestyén A, Dankó T, Sztankovics D, Moldvai D, Raffay R, Cervi C, Krencz I, Zsiros V, Jeney A, Petővári G. The role of metabolic ecosystem in cancer progression — metabolic plasticity and mTOR hyperactivity in tumor tissues. Cancer Metastasis Rev 2022; 40:989-1033. [PMID: 35029792 PMCID: PMC8825419 DOI: 10.1007/s10555-021-10006-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/26/2021] [Indexed: 12/14/2022]
Abstract
Despite advancements in cancer management, tumor relapse and metastasis are associated with poor outcomes in many cancers. Over the past decade, oncogene-driven carcinogenesis, dysregulated cellular signaling networks, dynamic changes in the tissue microenvironment, epithelial-mesenchymal transitions, protein expression within regulatory pathways, and their part in tumor progression are described in several studies. However, the complexity of metabolic enzyme expression is considerably under evaluated. Alterations in cellular metabolism determine the individual phenotype and behavior of cells, which is a well-recognized hallmark of cancer progression, especially in the adaptation mechanisms underlying therapy resistance. In metabolic symbiosis, cells compete, communicate, and even feed each other, supervised by tumor cells. Metabolic reprogramming forms a unique fingerprint for each tumor tissue, depending on the cellular content and genetic, epigenetic, and microenvironmental alterations of the developing cancer. Based on its sensing and effector functions, the mechanistic target of rapamycin (mTOR) kinase is considered the master regulator of metabolic adaptation. Moreover, mTOR kinase hyperactivity is associated with poor prognosis in various tumor types. In situ metabolic phenotyping in recent studies highlights the importance of metabolic plasticity, mTOR hyperactivity, and their role in tumor progression. In this review, we update recent developments in metabolic phenotyping of the cancer ecosystem, metabolic symbiosis, and plasticity which could provide new research directions in tumor biology. In addition, we suggest pathomorphological and analytical studies relating to metabolic alterations, mTOR activity, and their associations which are necessary to improve understanding of tumor heterogeneity and expand the therapeutic management of cancer.
Collapse
|
8
|
Kong D, Fan S, Sun L, Chen X, Zhao Y, Zhao L, Guo Z, Li Y. Growth inhibition and suppression of the mTOR and Wnt/β-catenin pathways in T-acute lymphoblastic leukemia by rapamycin and MYCN depletion. Hematol Oncol 2020; 39:222-230. [PMID: 33300153 DOI: 10.1002/hon.2831] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/01/2020] [Accepted: 12/06/2020] [Indexed: 12/12/2022]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignancy. Understanding of the molecular pathogenesis may lead to novel therapeutic targets. Rapamycin, the mammalian target of rapamycin (mTOR) inhibitor, showed inhibitory effects on T-ALL cells. In this study, we showed that rapamycin significantly reduced MYCN mRNA and protein in a concentration-dependent manner in T-ALL cells. Selective knockdown of MYCN by small interfering RNA had similar effects to rapamycin to inhibit T-ALL proliferation and colony formation and to induce G1-phase cell-cycle arrest and apoptosis. The inhibitory effects of rapamycin and MYCN depletion were also found in a Molt-4 xenograft model. Rapamycin and MYCN inhibition suppressed both Wnt/β-catenin and mTOR signaling pathways. The results suggest the effects of rapamycin on adult T-ALL is likely mediated by downregulation of MYCN. The findings suggest MYCN a potential target for the treatment of adult T-ALL. Additionally, dual targeting of mTOR and Wnt/β-catenin pathways may represent a novel strategy in the treatment of adult T-ALL.
Collapse
Affiliation(s)
- Desheng Kong
- Department of Hematology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Shengjin Fan
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Lili Sun
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Xi Chen
- Department of Hematology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yanqiu Zhao
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Linlin Zhao
- Department of Blood Transfusion, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Zhibo Guo
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yinghua Li
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| |
Collapse
|
9
|
Adaptive responses to mTOR gene targeting in hematopoietic stem cells reveal a proliferative mechanism evasive to mTOR inhibition. Proc Natl Acad Sci U S A 2020; 118:2020102118. [PMID: 33443202 DOI: 10.1073/pnas.2020102118] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The mechanistic target of rapamycin (mTOR) is a central regulator of cell growth and an attractive anticancer target that integrates diverse signals to control cell proliferation. Previous studies using mTOR inhibitors have shown that mTOR targeting suppresses gene expression and cell proliferation. To date, however, mTOR-targeted therapies in cancer have seen limited efficacy, and one key issue is related to the development of evasive resistance. In this manuscript, through the use of a gene targeting mouse model, we have found that inducible deletion of mTOR in hematopoietic stem cells (HSCs) results in a loss of quiescence and increased proliferation. Adaptive to the mTOR loss, mTOR -/- HSCs increase chromatin accessibility and activate global gene expression, contrary to the effects of short-term inhibition by mTOR inhibitors. Mechanistically, such genomic changes are due to a rewiring and adaptive activation of the ERK/MNK/eIF4E signaling pathway that enhances the protein translation of RNA polymerase II, which in turn leads to increased c-Myc gene expression, allowing the HSCs to thrive despite the loss of a functional mTOR pathway. This adaptive mechanism can also be utilized by leukemia cells undergoing long-term mTOR inhibitor treatment to confer resistance to mTOR drug targeting. The resistance can be counteracted by MNK, CDK9, or c-Myc inhibition. These results provide insights into the physiological role of mTOR in mammalian stem cell regulation and implicate a mechanism of evasive resistance in the context of mTOR targeting.
Collapse
|
10
|
El-Ghammaz AMS, Azzazi MO, Mostafa N, Hegab HM, Mahmoud AA. Prognostic significance of serum progranulin level in de novo adult acute lymphoblastic leukemia patients. Clin Exp Med 2020; 20:269-276. [PMID: 32006270 DOI: 10.1007/s10238-020-00610-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/27/2020] [Indexed: 01/14/2023]
Abstract
Increased expression of progranulin (PGRN) has been reported in some hematological cancers, but limited information regarding its significance in acute lymphoblastic leukemia (ALL) is available. This study involved 60 subjects (40 de novo adult ALL patients and 20 controls). Serum PGRN level was measured by enzyme-linked immunosorbent assay and was correlated with patient outcome. Serum PGRN level was significantly higher in patients than controls. Serum PGRN level did not correlate with age, total leukocytic count, hemoglobin, platelets, absolute blast count in peripheral blood, lactate dehydrogenase, percent of blasts in bone marrow, gender, comorbidities, the presence of central nervous system infiltration, ALL phenotype, cytogenetics and risk of the disease. High serum PGRN level was not associated with inferior overall survival (OS) on univariate analysis. Regarding cumulative incidence of relapse (CIR) and disease-free survival (DFS), high PGRN level was associated with poor results on univariate analysis. Moreover, it tended to be independent risk factor on multivariate analysis for CIR but was not an independent predictor of inferior DFS. Serum PGRN level is significantly elevated in de novo adult ALL patients and may be used as a predictor of increased relapse risk.
Collapse
Affiliation(s)
- Amro M S El-Ghammaz
- Clinical Hematology and Bone Marrow Transplantation Unit, Internal Medicine Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | - Mohamed O Azzazi
- Clinical Hematology and Bone Marrow Transplantation Unit, Internal Medicine Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Nevine Mostafa
- Clinical Hematology and Bone Marrow Transplantation Unit, Internal Medicine Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Hany M Hegab
- Clinical Hematology and Bone Marrow Transplantation Unit, Internal Medicine Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Amir A Mahmoud
- Clinical Hematology and Bone Marrow Transplantation Unit, Internal Medicine Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
11
|
Mezzatesta C, Bornhauser BC. Exploiting Necroptosis for Therapy of Acute Lymphoblastic Leukemia. Front Cell Dev Biol 2019; 7:40. [PMID: 30941349 PMCID: PMC6433701 DOI: 10.3389/fcell.2019.00040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 03/05/2019] [Indexed: 01/23/2023] Open
Abstract
Escape from chemotherapy-induced apoptosis is a hallmark of drug resistance in cancer. The recent identification of alternative programmed cell death pathways opens up for possibilities to circumvent the apoptotic blockade in drug resistant cancer and eliminate malignant cells. Indeed, we have recently shown that programmed necrosis, termed necroptosis, could be triggered to induce cell death in a subgroup of primary acute lymphoblastic leukemia (ALL) including highly refractory relapsed cases. In this review we focus on molecular mechanisms that drive drug resistance in ALL of childhood and discuss the potential of necroptosis activation to eradicate resistant disease.
Collapse
Affiliation(s)
- Caterina Mezzatesta
- Department of Oncology and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Beat C Bornhauser
- Department of Oncology and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
12
|
Targeting mTOR in Acute Lymphoblastic Leukemia. Cells 2019; 8:cells8020190. [PMID: 30795552 PMCID: PMC6406494 DOI: 10.3390/cells8020190] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/12/2019] [Accepted: 02/16/2019] [Indexed: 12/12/2022] Open
Abstract
Acute Lymphoblastic Leukemia (ALL) is an aggressive hematologic disorder and constitutes approximately 25% of cancer diagnoses among children and teenagers. Pediatric patients have a favourable prognosis, with 5-years overall survival rates near 90%, while adult ALL still correlates with poorer survival. However, during the past few decades, the therapeutic outcome of adult ALL was significantly ameliorated, mainly due to intensive pediatric-based protocols of chemotherapy. Mammalian (or mechanistic) target of rapamycin (mTOR) is a conserved serine/threonine kinase belonging to the phosphatidylinositol 3-kinase (PI3K)-related kinase family (PIKK) and resides in two distinct signalling complexes named mTORC1, involved in mRNA translation and protein synthesis and mTORC2 that controls cell survival and migration. Moreover, both complexes are remarkably involved in metabolism regulation. Growing evidence reports that mTOR dysregulation is related to metastatic potential, cell proliferation and angiogenesis and given that PI3K/Akt/mTOR network activation is often associated with poor prognosis and chemoresistance in ALL, there is a constant need to discover novel inhibitors for ALL treatment. Here, the current knowledge of mTOR signalling and the development of anti-mTOR compounds are documented, reporting the most relevant results from both preclinical and clinical studies in ALL that have contributed significantly into their efficacy or failure.
Collapse
|
13
|
Haider Z, Larsson P, Landfors M, Köhn L, Schmiegelow K, Flaegstad T, Kanerva J, Heyman M, Hultdin M, Degerman S. An integrated transcriptome analysis in T-cell acute lymphoblastic leukemia links DNA methylation subgroups to dysregulated TAL1 and ANTP homeobox gene expression. Cancer Med 2018; 8:311-324. [PMID: 30575306 PMCID: PMC6346238 DOI: 10.1002/cam4.1917] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/12/2018] [Accepted: 11/19/2018] [Indexed: 01/01/2023] Open
Abstract
Classification of pediatric T‐cell acute lymphoblastic leukemia (T‐ALL) patients into CIMP (CpG Island Methylator Phenotype) subgroups has the potential to improve current risk stratification. To investigate the biology behind these CIMP subgroups, diagnostic samples from Nordic pediatric T‐ALL patients were characterized by genome‐wide methylation arrays, followed by targeted exome sequencing, telomere length measurement, and RNA sequencing. The CIMP subgroups did not correlate significantly with variations in epigenetic regulators. However, the CIMP+ subgroup, associated with better prognosis, showed indicators of longer replicative history, including shorter telomere length (P = 0.015) and older epigenetic (P < 0.001) and mitotic age (P < 0.001). Moreover, the CIMP+ subgroup had significantly higher expression of ANTP homeobox oncogenes, namely TLX3, HOXA9, HOXA10, and NKX2‐1, and novel genes in T‐ALL biology including PLCB4, PLXND1, and MYO18B. The CIMP− subgroup, with worse prognosis, was associated with higher expression of TAL1 along with frequent STIL‐TAL1 fusions (2/40 in CIMP+ vs 11/24 in CIMP−), as well as stronger expression of BEX1. Altogether, our findings suggest different routes for leukemogenic transformation in the T‐ALL CIMP subgroups, indicated by different replicative histories and distinct methylomic and transcriptomic profiles. These novel findings can lead to new therapeutic strategies.
Collapse
Affiliation(s)
- Zahra Haider
- Department of Medical Biosciences, Umeå University, Umeå, Sweden
| | - Pär Larsson
- Department of Medical Biosciences, Umeå University, Umeå, Sweden
| | - Mattias Landfors
- Department of Medical Biosciences, Umeå University, Umeå, Sweden
| | - Linda Köhn
- Department of Radiation Sciences, Umeå University, Umeå, Sweden
| | - Kjeld Schmiegelow
- Department of Paediatrics and Adolescent Medicine, Rigshospitalet, Copenhagen, Denmark
| | - Trond Flaegstad
- Department of Pediatrics, University of Tromsø and University Hospital of North Norway, Tromsø, Norway
| | - Jukka Kanerva
- Children's Hospital, Helsinki University Central Hospital, University of Helsinki, Helsinki, Finland
| | - Mats Heyman
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Magnus Hultdin
- Department of Medical Biosciences, Umeå University, Umeå, Sweden
| | - Sofie Degerman
- Department of Medical Biosciences, Umeå University, Umeå, Sweden
| |
Collapse
|
14
|
Therapeutic Targeting of mTOR in T-Cell Acute Lymphoblastic Leukemia: An Update. Int J Mol Sci 2018; 19:ijms19071878. [PMID: 29949919 PMCID: PMC6073309 DOI: 10.3390/ijms19071878] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 06/22/2018] [Accepted: 06/24/2018] [Indexed: 12/14/2022] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive blood malignancy that arises from the clonal expansion of transformed T-cell precursors. Although T-ALL prognosis has significantly improved due to the development of intensive chemotherapeutic protocols, primary drug-resistant and relapsed patients still display a dismal outcome. In addition, lifelong irreversible late effects from conventional therapy are a growing problem for leukemia survivors. Therefore, novel targeted therapies are required to improve the prognosis of high-risk patients. The mechanistic target of rapamycin (mTOR) is the kinase subunit of two structurally and functionally distinct multiprotein complexes, which are referred to as mTOR complex 1 (mTORC1) and mTORC2. These two complexes regulate a variety of physiological cellular processes including protein, lipid, and nucleotide synthesis, as well as autophagy in response to external cues. However, mTOR activity is frequently deregulated in cancer, where it plays a key oncogenetic role driving tumor cell proliferation, survival, metabolic transformation, and metastatic potential. Promising preclinical studies using mTOR inhibitors have demonstrated efficacy in many human cancer types, including T-ALL. Here, we highlight our current knowledge of mTOR signaling and inhibitors in T-ALL, with an emphasis on emerging evidence of the superior efficacy of combinations consisting of mTOR inhibitors and either traditional or targeted therapeutics.
Collapse
|
15
|
Simioni C, Martelli AM, Zauli G, Vitale M, McCubrey JA, Capitani S, Neri LM. Targeting the phosphatidylinositol 3-kinase/Akt/mechanistic target of rapamycin signaling pathway in B-lineage acute lymphoblastic leukemia: An update. J Cell Physiol 2018; 233:6440-6454. [PMID: 29667769 DOI: 10.1002/jcp.26539] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 02/12/2018] [Indexed: 12/26/2022]
Abstract
Despite considerable progress in treatment protocols, B-lineage acute lymphoblastic leukemia (B-ALL) displays a poor prognosis in about 15-20% of pediatric cases and about 60% of adult patients. In addition, life-long irreversible late effects from chemo- and radiation therapy, including secondary malignancies, are a growing problem for leukemia survivors. Targeted therapy holds promising perspectives for cancer treatment as it may be more effective and have fewer side effects than conventional therapies. The phosphatidylinositol 3-phosphate kinase (PI3K)/Akt/mechanistic target of rapamycin (mTOR) signaling pathway is a key regulatory cascade which controls proliferation, survival and drug-resistance of cancer cells, and it is frequently upregulated in the different subtypes of B-ALL, where it plays important roles in the pathophysiology, maintenance and progression of the disease. Moreover, activation of this signaling cascade portends a poorer prognosis in both pediatric and adult B-ALL patients. Promising preclinical data on PI3K/Akt/mTOR inhibitors have documented their anticancer activity in B-ALL and some of these novel drugs have entered clinical trials as they could lead to a longer event-free survival and reduce therapy-associated toxicity for patients with B-ALL. This review highlights the current status of PI3K/Akt/mTOR inhibitors in B-ALL, with an emphasis on emerging evidence of the superior efficacy of synergistic combinations involving the use of traditional chemotherapeutics or other novel, targeted agents.
Collapse
Affiliation(s)
- Carolina Simioni
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Giorgio Zauli
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Marco Vitale
- Department of Medicine and Surgery, University of Parma, Parma, Italy.,CoreLab, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina
| | - Silvano Capitani
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Luca M Neri
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|