1
|
Jalal MM, Algamdi MM, Alkayyal AA, Altayar MA, Mouminah AS, Alamrani AJ, Althaqafi NA, Alamrani RA, Alomrani WS, Alemrani YA, Alhelali M, Elfaki I, Mir R. Association of iron deficiency anaemia with the hospitalization and mortality rate of patients with COVID‑19. MEDICINE INTERNATIONAL 2024; 4:69. [PMID: 39301327 PMCID: PMC11411605 DOI: 10.3892/mi.2024.193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/26/2024] [Indexed: 09/22/2024]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) illness led to the coronavirus disease 2019 (COVID-19) pandemic, which has caused enormous health and financial losses, as well as challenges to global health. Iron deficiency anaemia (IDA) has been linked to adverse outcomes in patients infected with SARS-COV-2. The present study aimed to assess the association between IDA and the severity of COVID-19 in hospitalized patients. For this purpose, a retrospective data analysis of 100 patients with COVID-19 was conducted. Data of patients hospitalized with SARS-COV-2 infection confirmed by RT-PCR were collected between June, 2021 and March, 2022. The collected data included patient demographics, comorbidities, clinical signs, symptoms and IDA medical laboratory findings, including complete blood count and iron profiles. The results revealed that patients with COVID-19 admitted to the isolation unit represented 61.0% of the study sample, whereas 39.0% were admitted to the intensive care unit (ICU). No patients had stage I IDA, whereas 4 patients (4%) had stage II IDA. Furthermore, 19 patients (19.0%) had stage III IDA. A significantly higher proportion of patients with IDA (69.6%) were admitted to the ICU compared with those without IDA (29.9%, P<0.001). Additionally, patients with IDA had a higher proportion of a history of stroke compared with those without IDA (17.4 vs. 2.6%, respectively, P=0.024). The most common comorbidities identified were hypertension (29%), diabetes (23%) and heart problems (17%). On the whole, the present study demonstrates significant associations between IDA and a longer hospitalization period. A greater incidence of complications was observed in the hospitalized patients who were SARS-COV-2-positive. Although further studies with larger sample sizes are required to confirm these findings, the results presented herein may provide insight for physicians as regards the prevention and treatment of patients with IDA who are infected with coronavirus.
Collapse
Affiliation(s)
- Mohammed M Jalal
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Kingdom of Saudi Arabia
| | - Maaidah M Algamdi
- Faculty of Nursing, Community and Mental Health Nursing Department, University of Tabuk, Tabuk 71491, Kingdom of Saudi Arabia
| | - Almohanad A Alkayyal
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Kingdom of Saudi Arabia
| | - Malik A Altayar
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Kingdom of Saudi Arabia
| | - Amr S Mouminah
- Neuroscience Center, King Abdullah Medical Complex, Jeddah 23816, Kingdom of Saudi Arabia
| | - Ahlam Jumaa Alamrani
- Faculty of Nursing, Community and Mental Health Nursing Department, University of Tabuk, Tabuk 71491, Kingdom of Saudi Arabia
| | - Nouf Abdulaziz Althaqafi
- Faculty of Nursing, Community and Mental Health Nursing Department, University of Tabuk, Tabuk 71491, Kingdom of Saudi Arabia
| | - Reem Ali Alamrani
- Faculty of Nursing, Community and Mental Health Nursing Department, University of Tabuk, Tabuk 71491, Kingdom of Saudi Arabia
| | - Wjdan Salem Alomrani
- Faculty of Nursing, Community and Mental Health Nursing Department, University of Tabuk, Tabuk 71491, Kingdom of Saudi Arabia
| | - Yasmin Attallah Alemrani
- Faculty of Nursing, Community and Mental Health Nursing Department, University of Tabuk, Tabuk 71491, Kingdom of Saudi Arabia
| | - Marwan Alhelali
- Department of Statistics, Faculty of Science, University of Tabuk, Tabuk 71491, Kingdom of Saudi Arabia
| | - Imadeldin Elfaki
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Kingdom of Saudi Arabia
| | - Rashid Mir
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Kingdom of Saudi Arabia
| |
Collapse
|
2
|
Podzolkov VI, Vetluzhskaya MV, Medvedev ID, Abramova AA, Kislenko GA. [Dyspnea in post-COVID-19 patients: A review]. TERAPEVT ARKH 2024; 96:706-712. [PMID: 39106515 DOI: 10.26442/00403660.2024.07.202785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 07/21/2024] [Indexed: 08/09/2024]
Abstract
New coronavirus infection may lead to long-term consequences, particularly to post-COVID syndrome, one of the most common manifestations of which is dyspnea. Post-COVID-19 shortness of breath may persist from one to several months and even years that results in low quality of life of patients. The review highlights possible risk factors and causes of dyspnea in post-COVID period such as lung damage, cardiovascular pathology, hyperventilation syndrome, dysfunction of the autonomic nervous system, detraining, anemia, etc. The authors present data about COVID-19-associated causes of dyspnea and severity of acute COVID-19. The review emphasizes the importance of a multidisciplinary approach to the diagnosis and treatment of patients with shortness of breath in post-COVID-19 period.
Collapse
Affiliation(s)
- V I Podzolkov
- Sechenov First Moscow State Medical University (Sechenov University)
| | - M V Vetluzhskaya
- Sechenov First Moscow State Medical University (Sechenov University)
| | - I D Medvedev
- Sechenov First Moscow State Medical University (Sechenov University)
| | - A A Abramova
- Sechenov First Moscow State Medical University (Sechenov University)
| | - G A Kislenko
- Sechenov First Moscow State Medical University (Sechenov University)
| |
Collapse
|
3
|
Markovič R, Ternar L, Trstenjak T, Marhl M, Grubelnik V. Cardiovascular Comorbidities in COVID-19: Comprehensive Analysis of Key Topics. Interact J Med Res 2024; 13:e55699. [PMID: 39046774 PMCID: PMC11306943 DOI: 10.2196/55699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/22/2024] [Accepted: 05/23/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND The interrelation between COVID-19 and various cardiovascular and metabolic disorders has been a critical area of study. There is a growing need to understand how comorbidities such as cardiovascular diseases (CVDs) and metabolic disorders affect the risk and severity of COVID-19. OBJECTIVE The objective of this study is to systematically analyze the association between COVID-19 and cardiovascular and metabolic disorders. The focus is on comorbidity, examining the roles of CVDs such as embolism, thrombosis, hypertension, and heart failure, as well as metabolic disorders such as disorders of glucose and iron metabolism. METHODS Our study involved a systematic search in PubMed for literature published from 2000 to 2022. We established 2 databases: one for COVID-19-related articles and another for CVD-related articles, ensuring all were peer-reviewed. In terms of data analysis, statistical methods were applied to compare the frequency and relevance of MeSH (Medical Subject Headings) terms between the 2 databases. This involved analyzing the differences and ratios in the usage of these terms and employing statistical tests to determine their significance in relation to key CVDs within the COVID-19 research context. RESULTS The study revealed that "Cardiovascular Diseases" and "Nutritional and Metabolic Diseases" were highly relevant as level 1 Medical Subject Headings descriptors in COVID-19 comorbidity research. Detailed analysis at level 2 and level 3 showed "Vascular Disease" and "Heart Disease" as prominent descriptors under CVDs. Significantly, "Glucose Metabolism Disorders" were frequently associated with COVID-19 comorbidities such as embolism, thrombosis, and heart failure. Furthermore, iron deficiency (ID) was notably different in its occurrence between COVID-19 and CVD articles, underlining its significance in the context of COVID-19 comorbidities. Statistical analysis underscored these differences, highlighting the importance of both glucose and iron metabolism disorders in COVID-19 research. CONCLUSIONS This work lays the foundation for future research that utilizes a knowledge-based approach to elucidate the intricate relationships between these conditions, aiming to develop more effective health care strategies and interventions in the face of ongoing pandemic challenges.
Collapse
Affiliation(s)
- Rene Markovič
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
- Faculty of Electrical Engineering and Computer Science, University of Maribor, Maribor, Slovenia
| | - Luka Ternar
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Tim Trstenjak
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Marko Marhl
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Faculty of Education, University of Maribor, Maribor, Slovenia
| | - Vladimir Grubelnik
- Faculty of Electrical Engineering and Computer Science, University of Maribor, Maribor, Slovenia
| |
Collapse
|
4
|
Silva-Caso W, Kym S, Merino-Luna A, Aguilar-Luis MA, Tarazona-Castro Y, Carrillo-Ng H, Bonifacio-Velez de Villa E, Aquino-Ortega R, del Valle-Mendoza J. Analysis of Ferritin, Hepcidin, Zinc, C-Reactive Protein and IL-6 Levels in COVID-19 in Patients Living at Different Altitudes in Peru. Biomedicines 2024; 12:1609. [PMID: 39062181 PMCID: PMC11275107 DOI: 10.3390/biomedicines12071609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Despite great scientific efforts, understanding the role of COVID-19 clinical biomarkers remains a challenge. METHODS A cross-sectional descriptive study in two Peruvian cities at different altitudes for comparison: Lima and Huaraz. In each place, three groups were formed, made up of 25 patients with COVID-19 in the ICU, 25 hospitalized patients with COVID-19 who did not require the ICU, and 25 healthy subjects as a control group. Five biomarkers were measured: IL-6, hepcidin, ferritin, C-reactive protein, and zinc using ELISA assays. RESULTS Ferritin, C-reactive protein, and IL-6 levels were significantly higher in the ICU and non-ICU groups at both study sites. In the case of hepcidin, the levels were significantly higher in the ICU group at both study sites compared to the non-ICU group. Among the groups within each study site, the highest altitude area presented statistically significant differences between its groups in all the markers evaluated. In the lower altitude area, differences were only observed between the groups for the zinc biomarker. CONCLUSION COVID-19 patients residing at high altitudes tend to have higher levels of zinc and IL-6 in all groups studied compared to their lower altitude counterparts.
Collapse
Affiliation(s)
- Wilmer Silva-Caso
- Biomedicine Laboratory, Research Center of the Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Av. San Marcos Cuadra 2, Chorrillos, Lima 15023, Peru; (M.A.A.-L.); (H.C.-N.); (R.A.-O.)
- Instituto de Investigación Nutricional, Lima 15024, Peru
| | - Sungmin Kym
- Division of Infectious Disease, Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon 305764, Republic of Korea
| | - Alfredo Merino-Luna
- Unidad de Cuidados Intensivos, Clinica San Pablo, Sede Huaraz, Huaraz 02002, Peru
| | - Miguel Angel Aguilar-Luis
- Biomedicine Laboratory, Research Center of the Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Av. San Marcos Cuadra 2, Chorrillos, Lima 15023, Peru; (M.A.A.-L.); (H.C.-N.); (R.A.-O.)
- Instituto de Investigación Nutricional, Lima 15024, Peru
| | - Yordi Tarazona-Castro
- Biomedicine Laboratory, Research Center of the Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Av. San Marcos Cuadra 2, Chorrillos, Lima 15023, Peru; (M.A.A.-L.); (H.C.-N.); (R.A.-O.)
| | - Hugo Carrillo-Ng
- Biomedicine Laboratory, Research Center of the Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Av. San Marcos Cuadra 2, Chorrillos, Lima 15023, Peru; (M.A.A.-L.); (H.C.-N.); (R.A.-O.)
| | - Eliezer Bonifacio-Velez de Villa
- Biomedicine Laboratory, Research Center of the Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Av. San Marcos Cuadra 2, Chorrillos, Lima 15023, Peru; (M.A.A.-L.); (H.C.-N.); (R.A.-O.)
| | - Ronald Aquino-Ortega
- Biomedicine Laboratory, Research Center of the Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Av. San Marcos Cuadra 2, Chorrillos, Lima 15023, Peru; (M.A.A.-L.); (H.C.-N.); (R.A.-O.)
- School of Biology, Research Center of the Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicdas, Lima 15023, Peru
| | - Juana del Valle-Mendoza
- Biomedicine Laboratory, Research Center of the Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Av. San Marcos Cuadra 2, Chorrillos, Lima 15023, Peru; (M.A.A.-L.); (H.C.-N.); (R.A.-O.)
- Instituto de Investigación Nutricional, Lima 15024, Peru
| |
Collapse
|
5
|
Mundorf AK, Semmler A, Heidecke H, Schott M, Steffen F, Bittner S, Lackner KJ, Schulze-Bosse K, Pawlitzki M, Meuth SG, Klawonn F, Ruhrländer J, Boege F. Clinical and Diagnostic Features of Post-Acute COVID-19 Vaccination Syndrome (PACVS). Vaccines (Basel) 2024; 12:790. [PMID: 39066428 PMCID: PMC11281408 DOI: 10.3390/vaccines12070790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Post-acute COVID-19 vaccination syndrome (PACVS) is a chronic disease triggered by SARS-CoV-2 vaccination (estimated prevalence 0.02%). PACVS is discriminated from the normal post-vaccination state by altered receptor antibodies, most notably angiotensin II type 1 and alpha-2B adrenergic receptor antibodies. Here, we investigate the clinical phenotype using a study registry encompassing 191 PACVS-affected persons (159 females/32 males; median ages: 39/42 years). Unbiased clustering (modified Jaccard index) of reported symptoms revealed a prevalent cross-cohort symptomatology of malaise and chronic fatigue (>80% of cases). Overlapping clusters of (i) peripheral nerve dysfunction, dysesthesia, motor weakness, pain, and vasomotor dysfunction; (ii) cardiovascular impairment; and (iii) cognitive impairment, headache, and visual and acoustic dysfunctions were also frequently represented. Notable abnormalities of standard serum markers encompassing increased interleukins 6 and 8 (>80%), low free tri-iodine thyroxine (>80%), IgG subclass imbalances (>50%), impaired iron storage (>50%), and increased soluble neurofilament light chains (>30%) were not associated with specific symptoms. Based on these data, 131/191 participants fit myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and simultaneously also several other established dysautonomia syndromes. Furthermore, 31/191 participants fit none of these syndromes. In conclusion, PACVS could either be an outlier of ME/CFS or a dysautonomia syndrome sui generis.
Collapse
Affiliation(s)
- Anna Katharina Mundorf
- Central Institute for Clinical Chemistry and Laboratory Diagnostics, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (A.K.M.); (A.S.); (K.S.-B.)
| | - Amelie Semmler
- Central Institute for Clinical Chemistry and Laboratory Diagnostics, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (A.K.M.); (A.S.); (K.S.-B.)
| | | | - Matthias Schott
- Division for Specific Endocrinology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, 40225 Düsseldorf, Germany;
| | - Falk Steffen
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (RMN2), Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (F.S.); (S.B.)
| | - Stefan Bittner
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (RMN2), Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (F.S.); (S.B.)
| | - Karl J. Lackner
- University Medical Center, Johannes Gutenberg University Mainz, 55122 Mainz, Germany;
| | - Karin Schulze-Bosse
- Central Institute for Clinical Chemistry and Laboratory Diagnostics, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (A.K.M.); (A.S.); (K.S.-B.)
| | - Marc Pawlitzki
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (M.P.); (S.G.M.)
| | - Sven Guenther Meuth
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (M.P.); (S.G.M.)
| | - Frank Klawonn
- Biostatistics Research Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany;
- Department of Computer Science, Ostfalia University, 38302 Wolfenbüttel, Germany
| | - Jana Ruhrländer
- Selbsthilfegruppe Post-Vac-Syndrom Deutschland e.V., 34121 Kassel, Germany;
| | - Fritz Boege
- Central Institute for Clinical Chemistry and Laboratory Diagnostics, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (A.K.M.); (A.S.); (K.S.-B.)
| |
Collapse
|
6
|
Zhang X, Holbein B, Zhou J, Lehmann C. Iron Metabolism in the Recovery Phase of Critical Illness with a Focus on Sepsis. Int J Mol Sci 2024; 25:7004. [PMID: 39000113 PMCID: PMC11241301 DOI: 10.3390/ijms25137004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/19/2024] [Accepted: 06/22/2024] [Indexed: 07/16/2024] Open
Abstract
Iron is an essential nutrient for humans and microbes, such as bacteria. Iron deficiency commonly occurs in critically ill patients, but supplementary iron therapy is not considered during the acute phase of critical illness since it increases iron availability for invading microbes and oxidative stress. However, persistent iron deficiency in the recovery phase is harmful and has potential adverse outcomes such as cognitive dysfunction, fatigue, and cardiopulmonary dysfunction. Therefore, it is important to treat iron deficiency quickly and efficiently. This article reviews current knowledge about iron-related biomarkers in critical illness with a focus on patients with sepsis, and provides possible criteria to guide decision-making for iron supplementation in the recovery phase of those patients.
Collapse
Affiliation(s)
- Xiyang Zhang
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS B3H 1X5, Canada; (X.Z.); (J.Z.)
- Guangdong Provincial Key Laboratory of Precision Anaesthesia and Perioperative Organ Protection, Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Bruce Holbein
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS B3H 1X5, Canada;
| | - Juan Zhou
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS B3H 1X5, Canada; (X.Z.); (J.Z.)
| | - Christian Lehmann
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS B3H 1X5, Canada; (X.Z.); (J.Z.)
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS B3H 1X5, Canada;
- Department of Physiology & Biophysics, Dalhousie University, Halifax, NS B3H 1X5, Canada
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
7
|
Gugo K, Tandara L, Juricic G, Pavicic Ivelja M, Rumora L. Effects of Hypoxia and Inflammation on Hepcidin Concentration in Non-Anaemic COVID-19 Patients. J Clin Med 2024; 13:3201. [PMID: 38892911 PMCID: PMC11173117 DOI: 10.3390/jcm13113201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/20/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Background/Objectives: This study aimed to explore the influence of hypoxia, inflammation, and erythropoiesis on hepcidin and other iron status parameters in non-anaemic COVID-19 patients admitted to the emergency unit before the introduction of therapeutic interventions. Methods: Ninety-six COVID-19 patients and 47 healthy subjects were recruited. Patients were subdivided into hypoxic or normoxic groups and, after follow-up, into mild and moderate, severe or critical disease severity groups. Iron, unsaturated iron-binding capacity (UIBC), ferritin, C-reactive protein (CRP), and interleukin 6 (IL-6) were measured on automatic analysers. ELISA kits were used for hepcidin and erythropoietin (EPO) determination. We calculated total iron-binding capacity (TIBC) and ratios of hepcidin with parameters of iron metabolism (ferritin/hepcidin, hepcidin/iron), inflammation (hepcidin/CRP, hepcidin/IL-6), and erythropoietic activity (hepcidin/EPO). Results: Hepcidin, ferritin, EPO, CRP, IL-6, ferritin/hepcidin, and hepcidin/iron were increased, while UIBC, TIBC, hepcidin/CRP, and hepcidin/IL-6 were decreased in hypoxic compared to normoxic patients as well as in patients with severe or critical disease compared to those with mild and moderate COVID-19. Regarding predictive parameters of critical COVID-19 occurrence, in multivariable logistic regression analysis, a combination of EPO and ferritin/hepcidin showed very good diagnostic performances and correctly classified 88% of cases, with an AUC of 0.838 (0.749-0.906). Conclusions: The hypoxic signal in our group of patients was not strong enough to overcome the stimulating effect of inflammation on hepcidin expression. EPO and ferritin/hepcidin might help to identify on-admission COVID-19 patients at risk of developing a critical form of the disease.
Collapse
Affiliation(s)
- Katarina Gugo
- Medical Laboratory Diagnostic Division, University Hospital of Split, Soltanska 1, 21000 Split, Croatia;
- Department of Health Studies, University of Split, Rudera Boskovica 35, 21000 Split, Croatia;
| | - Leida Tandara
- Medical Laboratory Diagnostic Division, University Hospital of Split, Soltanska 1, 21000 Split, Croatia;
- Department of Medical Chemistry and Biochemistry, University of Split School of Medicine, Soltanska 2, 21000 Split, Croatia
| | - Gordana Juricic
- Department of Laboratory Diagnostics, General Hospital Pula, Santoriova 24a, 52100 Pula, Croatia;
| | - Mirela Pavicic Ivelja
- Department of Health Studies, University of Split, Rudera Boskovica 35, 21000 Split, Croatia;
- Department of Infectious Diseases, University Hospital of Split, Soltanska 1, 21000 Split, Croatia
| | - Lada Rumora
- Department of Medical Biochemistry and Haematology, University of Zagreb Faculty of Pharmacy and Biochemistry, A. Kovacica 1, 10000 Zagreb, Croatia;
| |
Collapse
|
8
|
Yehia A, Abulseoud OA. Melatonin: a ferroptosis inhibitor with potential therapeutic efficacy for the post-COVID-19 trajectory of accelerated brain aging and neurodegeneration. Mol Neurodegener 2024; 19:36. [PMID: 38641847 PMCID: PMC11031980 DOI: 10.1186/s13024-024-00728-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/15/2024] [Indexed: 04/21/2024] Open
Abstract
The unprecedented pandemic of COVID-19 swept millions of lives in a short period, yet its menace continues among its survivors in the form of post-COVID syndrome. An exponentially growing number of COVID-19 survivors suffer from cognitive impairment, with compelling evidence of a trajectory of accelerated aging and neurodegeneration. The novel and enigmatic nature of this yet-to-unfold pathology demands extensive research seeking answers for both the molecular underpinnings and potential therapeutic targets. Ferroptosis, an iron-dependent cell death, is a strongly proposed underlying mechanism in post-COVID-19 aging and neurodegeneration discourse. COVID-19 incites neuroinflammation, iron dysregulation, reactive oxygen species (ROS) accumulation, antioxidant system repression, renin-angiotensin system (RAS) disruption, and clock gene alteration. These events pave the way for ferroptosis, which shows its signature in COVID-19, premature aging, and neurodegenerative disorders. In the search for a treatment, melatonin shines as a promising ferroptosis inhibitor with its repeatedly reported safety and tolerability. According to various studies, melatonin has proven efficacy in attenuating the severity of certain COVID-19 manifestations, validating its reputation as an anti-viral compound. Melatonin has well-documented anti-aging properties and combating neurodegenerative-related pathologies. Melatonin can block the leading events of ferroptosis since it is an efficient anti-inflammatory, iron chelator, antioxidant, angiotensin II antagonist, and clock gene regulator. Therefore, we propose ferroptosis as the culprit behind the post-COVID-19 trajectory of aging and neurodegeneration and melatonin, a well-fitting ferroptosis inhibitor, as a potential treatment.
Collapse
Affiliation(s)
- Asmaa Yehia
- Department of Neuroscience, Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine, Phoenix, AZ, 58054, USA
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Osama A Abulseoud
- Department of Neuroscience, Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine, Phoenix, AZ, 58054, USA.
- Department of Psychiatry and Psychology, Mayo Clinic Arizona, 5777 E Mayo Blvd, Phoenix, AZ, 85054, USA.
| |
Collapse
|
9
|
Totan M, Matacuta-Bogdan IO, Hasegan A, Maniu I. Vitamin D Levels in COVID-19 and NonCOVID-19 Pediatric Patients and Its Relationship with Clinical and Laboratory Characteristics. Biomedicines 2024; 12:905. [PMID: 38672258 PMCID: PMC11048677 DOI: 10.3390/biomedicines12040905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/14/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
25-hydroxyvitamin D [25(OH)D] is a marker with an important role in regulating the inflammatory response. Low concentrations of this vitamin are often found among the population, correlated with increased risk of respiratory tract infections. The aim of the study is to evaluate the relationship between vitamin D levels and clinical and laboratory markers in children and adolescents hospitalized with and without COVID-19. A retrospective study, including all patients tested for SARS-CoV-2 and having vitamin D measured, was performed. All included hospitalized cases, 78 COVID-19 patients and 162 NonCOVID-19 patients, were divided into subgroups according to their 25(OH)D serum levels (<20 ng/mL-deficiency, 20-30 ng/mL-insufficiency, ≥30 ng/mL-normal or <30 ng/mL, ≥30 ng/mL) and age (≤2 years, >2 years). Vitamin D deficiency and insufficiency increased with age, in both COVID-19 and NonCOVID-19 groups. All symptoms were encountered more frequently in cases of pediatric patients with COVID-19 in comparison with NonCOVID-19 cases. The most frequently encountered symptoms in the COVID-19 group were fever, loss of appetite, and nasal congestion. In the NonCOVID-19 group, serum 25(OH)D concentrations were positively correlated with leukocytes, lymphocytes, and LMR and negatively correlated with neutrophils, NLR, and PLR while no significant correlation was observed in the case of COVID-19 group. Differences between vitamin D status and clinical and laboratory parameters were observed, but their clinical significance should be interpreted with caution. The results of this study may offer further support for future studies exploring the mechanisms of the relationship between vitamin D and clinical and laboratory markers as well as for studies investigating the implications of vitamin D deficiency/supplementation on overall health/clinical outcomes of patients with/without COVID-19.
Collapse
Affiliation(s)
- Maria Totan
- Faculty of Medicine, Lucian Blaga University of Sibiu, 2A Lucian Blaga Str., 550169 Sibiu, Romania; (M.T.); (A.H.)
- Clinical Laboratory, Pediatric Clinical Hospital Sibiu, 2-4 Pompeiu Onofreiu Str., 550166 Sibiu, Romania
| | | | - Adrian Hasegan
- Faculty of Medicine, Lucian Blaga University of Sibiu, 2A Lucian Blaga Str., 550169 Sibiu, Romania; (M.T.); (A.H.)
| | - Ionela Maniu
- Research Team, Pediatric Clinical Hospital Sibiu, 550166 Sibiu, Romania
- Research Center in Informatics and Information Technology, Mathematics and Informatics Department, Faculty of Sciences, Lucian Blaga University of Sibiu, 550025 Sibiu, Romania
| |
Collapse
|
10
|
Patil U, Nilsuwan K, Buamard N, Zhang B, Benjakul S. Characteristics and molecular properties of crude hemeproteins extracted from Asian seabass gills using an ultrasound-assisted process. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2326-2335. [PMID: 37953475 DOI: 10.1002/jsfa.13121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/26/2023] [Accepted: 11/13/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND The development of a safe and effective iron supplement is important for the treatment of iron-deficient anemia. Therefore, the crude hemeprotein extract (CHPE) from Asian seabass gills was extracted without (CON) and with ultrasound (US)-assisted process, followed by freeze-drying. The resulting freeze-dried crude hemeprotein extract (FDCHPE) powders were determined for trace mineral content, color, secondary structure, protein pattern, size distribution, volatile compounds, and amino acid composition. RESULTS The extraction yields of CON-FDCHPE and US-FDCHPE were 6.76% and 13.65%, respectively. Highest heme iron (0.485 mg/mL) and non-heme iron (0.023 mg/mL) contents were found when US at 70% amplitude for 10 min (US 70/10) was applied. Both CON-FDCHPE and US-FDCHPE had no heavy metals, but higher iron content (432.8 mg/kg) was found in US-FDCHPE (P < 0.05). Typical red color was observed in CON-FDCHPE and US-FDCHPE with a*-values of 9.72 and 10.60, respectively. Ultrasonication affected protein structure, in which β-sheet upsurged, whereas random coil, α-helix, and β-turn were reduced. Protein pattern confirmed that both samples had myoglobin as the major protein. US-FDCHPE also showed a higher abundance of volatile compounds, especially propanal, hexanal, heptanal, and so forth, compared to CON-FDCHPE. Amino acid composition of US-FDCHPE was comparable to Food and Agriculture Organization of the United Nations (FAO) values. CONCLUSION Overall, FDCHPE extracted using ultrasonication could be safe and effective for fortification in food products as an iron supplement to alleviate iron-deficient anemia. Additionally, gills as leftovers could be better exploited rather than being disposed. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Umesh Patil
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Songkhla, Thailand
| | - Krisana Nilsuwan
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Songkhla, Thailand
| | - Natchaphol Buamard
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Songkhla, Thailand
| | - Bin Zhang
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food and Pharmacy, Zhejiang Ocean University, Zhejiang, China
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Songkhla, Thailand
- Department of Food and Nutrition, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
11
|
Abstract
This review provides a concise overview of the cellular and clinical aspects of the role of zinc, an essential micronutrient, in human physiology and discusses zinc-related pathological states. Zinc cannot be stored in significant amounts, so regular dietary intake is essential. ZIP4 and/or ZnT5B transport dietary zinc ions from the duodenum into the enterocyte, ZnT1 transports zinc ions from the enterocyte into the circulation, and ZnT5B (bidirectional zinc transporter) facilitates endogenous zinc secretion into the intestinal lumen. Putative promoters of zinc absorption that increase its bioavailability include amino acids released from protein digestion and citrate, whereas dietary phytates, casein and calcium can reduce zinc bioavailability. In circulation, 70% of zinc is bound to albumin, and the majority in the body is found in skeletal muscle and bone. Zinc excretion is via faeces (predominantly), urine, sweat, menstrual flow and semen. Excessive zinc intake can inhibit the absorption of copper and iron, leading to copper deficiency and anaemia, respectively. Zinc toxicity can adversely affect the lipid profile and immune system, and its treatment depends on the mode of zinc acquisition. Acquired zinc deficiency usually presents later in life alongside risk factors like malabsorption syndromes, but medications like diuretics and angiotensin-receptor blockers can also cause zinc deficiency. Inherited zinc deficiency condition acrodermatitis enteropathica, which occurs due to mutation in the SLC39A4 gene (encoding ZIP4), presents from birth. Treatment involves zinc supplementation via zinc gluconate, zinc sulphate or zinc chloride. Notably, oral zinc supplementation may decrease the absorption of drugs like ciprofloxacin, doxycycline and risedronate.
Collapse
Affiliation(s)
- Lucy I Stiles
- Faculty of Life Sciences and Medicine, GKT School of Medical Education, King's College London, London, UK
| | - Kevin Ferrao
- Faculty of Life Sciences and Medicine, GKT School of Medical Education, King's College London, London, UK
| | - Kosha J Mehta
- Faculty of Life Sciences and Medicine, Centre for Education, King's College London, London, UK.
| |
Collapse
|
12
|
Grange C, Lux F, Brichart T, David L, Couturier A, Leaf DE, Allaouchiche B, Tillement O. Iron as an emerging therapeutic target in critically ill patients. Crit Care 2023; 27:475. [PMID: 38049866 PMCID: PMC10694984 DOI: 10.1186/s13054-023-04759-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/24/2023] [Indexed: 12/06/2023] Open
Abstract
The multiple roles of iron in the body have been known for decades, particularly its involvement in iron overload diseases such as hemochromatosis. More recently, compelling evidence has emerged regarding the critical role of non-transferrin bound iron (NTBI), also known as catalytic iron, in the care of critically ill patients in intensive care units (ICUs). These trace amounts of iron constitute a small percentage of the serum iron, yet they are heavily implicated in the exacerbation of diseases, primarily by catalyzing the formation of reactive oxygen species, which promote oxidative stress. Additionally, catalytic iron activates macrophages and facilitates the growth of pathogens. This review aims to shed light on this underappreciated phenomenon and explore the various common sources of NTBI in ICU patients, which lead to transient iron dysregulation during acute phases of disease. Iron serves as the linchpin of a vicious cycle in many ICU pathologies that are often multifactorial. The clinical evidence showing its detrimental impact on patient outcomes will be outlined in the major ICU pathologies. Finally, different therapeutic strategies will be reviewed, including the targeting of proteins involved in iron metabolism, conventional chelation therapy, and the combination of renal replacement therapy with chelation therapy.
Collapse
Affiliation(s)
- Coralie Grange
- MexBrain, 13 Avenue Albert Einstein, Villeurbanne, France
- Institut Lumière-Matière, UMR 5306, Université Claude Bernard Lyon1-CNRS, Villeurbanne Cedex, France
| | - François Lux
- Institut Lumière-Matière, UMR 5306, Université Claude Bernard Lyon1-CNRS, Villeurbanne Cedex, France.
- Institut Universitaire de France (IUF), 75231, Paris, France.
| | | | - Laurent David
- Institut National des Sciences Appliquées, CNRS UMR 5223, Ingénierie des Matériaux Polymères, Univ Claude Bernard Lyon 1, Université Jean Monnet, 15 bd Latarjet, 69622, Villeurbanne, France
| | - Aymeric Couturier
- MexBrain, 13 Avenue Albert Einstein, Villeurbanne, France
- Nephrology, American Hospital of Paris, Paris, France
| | - David E Leaf
- Division of Renal Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Bernard Allaouchiche
- University of Lyon, University Lyon I Claude Bernard, APCSe VetAgro Sup UP, 2021. A10, Marcy L'Étoile, France
| | - Olivier Tillement
- Institut Lumière-Matière, UMR 5306, Université Claude Bernard Lyon1-CNRS, Villeurbanne Cedex, France
| |
Collapse
|
13
|
Harte JV, Coleman-Vaughan C, Crowley MP, Mykytiv V. It's in the blood: a review of the hematological system in SARS-CoV-2-associated COVID-19. Crit Rev Clin Lab Sci 2023; 60:595-624. [PMID: 37439130 DOI: 10.1080/10408363.2023.2232010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/27/2023] [Indexed: 07/14/2023]
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to an unprecedented global healthcare crisis. While SARS-CoV-2-associated COVID-19 affects primarily the respiratory system, patients with COVID-19 frequently develop extrapulmonary manifestations. Notably, changes in the hematological system, including lymphocytopenia, neutrophilia and significant abnormalities of hemostatic markers, were observed early in the pandemic. Hematological manifestations have since been recognized as important parameters in the pathophysiology of SARS-CoV-2 and in the management of patients with COVID-19. In this narrative review, we summarize the state-of-the-art regarding the hematological and hemostatic abnormalities observed in patients with SARS-CoV-2-associated COVID-19, as well as the current understanding of the hematological system in the pathophysiology of acute and chronic SARS-CoV-2-associated COVID-19.
Collapse
Affiliation(s)
- James V Harte
- Department of Haematology, Cork University Hospital, Wilton, Cork, Ireland
- School of Biochemistry & Cell Biology, University College Cork, Cork, Ireland
| | | | - Maeve P Crowley
- Department of Haematology, Cork University Hospital, Wilton, Cork, Ireland
- Irish Network for Venous Thromboembolism Research (INViTE), Ireland
| | - Vitaliy Mykytiv
- Department of Haematology, Cork University Hospital, Wilton, Cork, Ireland
| |
Collapse
|
14
|
Park S, Kim D, Kim J, Kwon HJ, Lee Y. SARS-CoV-2 infection induces expression and secretion of lipocalin-2 and regulates iron in a human lung cancer xenograft model. BMB Rep 2023; 56:669-674. [PMID: 37915137 PMCID: PMC10761745 DOI: 10.5483/bmbrep.2023-0177] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/05/2023] [Accepted: 10/30/2023] [Indexed: 07/10/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection leads to various clinical symptoms including anemia. Lipocalin-2 has various biological functions, including defense against bacterial infections through iron sequestration, and it serves as a biomarker for kidney injury. In a human protein array, we observed increased lipocalin-2 expression due to parental SARS-CoV-2 infection in the Calu-3 human lung cancer cell line. The secretion of lipocalin-2 was also elevated in response to parental SARS-CoV-2 infection, and the SARS-CoV-2 Alpha, Beta, and Delta variants similarly induced this phenomenon. In a Calu-3 implanted mouse xenograft model, parental SARSCoV- 2 and Delta variant induced lipocalin-2 expression and secretion. Additionally, the iron concentration increased in the Calu-3 tumor tissues and decreased in the serum due to infection. In conclusion, SARS-CoV-2 infection induces the production and secretion of lipocalin-2, potentially resulting in a decrease in iron concentration in serum. Because the concentration of iron ions in the blood is associated with anemia, this phenomenon could contribute to developing anemia in COVID-19 patients. [BMB Reports 2023; 56(12): 669-674].
Collapse
Affiliation(s)
- Sangkyu Park
- Biotechnology Research Institute, Chungbuk National University, Cheongju 28644, Korea
| | - Dongbum Kim
- Institute of Medical Science, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Jinsoo Kim
- Institute of Medical Science, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Hyung-Joo Kwon
- Institute of Medical Science, College of Medicine, Hallym University, Chuncheon 24252, Korea
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Younghee Lee
- Biotechnology Research Institute, Chungbuk National University, Cheongju 28644, Korea
- Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju 28644, Korea
| |
Collapse
|
15
|
Musat O, Sorop VB, Sorop MI, Lazar V, Marti DT, Susan M, Avram CR, Oprisoni A, Vulcanescu DD, Horhat FG, Bagiu IC, Horhat DI, Diaconu MM. COVID-19 and Laboratory Markers from Romanian Patients-A Narrative Review. Life (Basel) 2023; 13:1837. [PMID: 37763241 PMCID: PMC10532991 DOI: 10.3390/life13091837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/09/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
COVID-19 has significantly impacted the whole world, and Romania was no exception. Biomarkers play a crucial role in understanding and managing the disease. However, research regarding laboratory analyses for patients with COVID-19 is fairly limited. For detection, PCR testing is still considered the golden standard, while antibodies are still useful for monitoring both patients and their vaccination status. In our country, biomarkers such as CRP, LDH, transaminases, cardiac, and iron markers have been used to assess the status of patients and even predict illness outcome. CRP, IL-6, LDH, FER, fibrinogen, creatinine, and vitamin D levels have been associated with increased severity, risk of ICU admission, and death. Cardiac markers and D-dimers are also good predictors, but their role seems more important in patients with complications. HDL cholesterol and BUN levels were also suggested as potential biomarkers. Hematological issues in SARS-CoV-2 infections include neutrophilia, lymphopenia and their ratio, while PCT, which is a marker of bacterial infections, is better to be used in patients with co- or supra-infections. The current research is a narrative review that focuses on the laboratory results of Romanian COVID-19 patients. The goal of this article is to provide an update on the research on biomarkers and other laboratory tests conducted inside the borders of Romania and identify gaps in this regard. Secondly, options for further research are discussed and encouraged.
Collapse
Affiliation(s)
- Ovidiu Musat
- Department of Ophthalmology, “Carol Davila” University of Medicine and Pharmacy, Dionisie Lupu Street, No. 37, Sector 2, 020021 Bucharest, Romania;
- Department of Ophthalmology, “Dr Carol Davila” Central Military Emergency University Hospital, Mircea Vulcanescu Street, No. 88, 010825 Bucharest, Romania
| | - Virgiliu Bogdan Sorop
- Department of Obstetrics and Gynecology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (V.B.S.); (M.M.D.)
| | - Madalina Ioana Sorop
- Doctoral School, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (M.I.S.); (D.D.V.)
| | - Viorica Lazar
- Department of General Medicine, “Vasile Goldis” University of Medicine, Liviu Rebreanu Street, No. 86, 310048 Arad, Romania;
- Pediatric Clinic II, Clinical Hospital Emergency of Arad County, Andrényi Károly Street, No. 2-4, 310037 Arad, Romania
| | - Daniela Teodora Marti
- Department of Biology and Life Sciences, “Vasile Goldis” University of Medicine, Liviu Rebreanu Street, No. 86, 310048 Arad, Romania;
- Clinical Analysis Laboratory Clinical Hospital Emergency of Arad County, Andrényi Károly Street, No. 2-4, 310037 Arad, Romania
| | - Monica Susan
- Department of Internal Medicine, Centre for Preventive Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
| | - Cecilia Roberta Avram
- Department of Residential Training and Post-University Courses, “Vasile Goldis” Western University, Liviu Rebreanu Street 86, 310414 Arad, Romania;
| | - Andrada Oprisoni
- Department of Pediatrics, Discipline of Pediatric Oncology and Hematology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
| | - Dan Dumitru Vulcanescu
- Doctoral School, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (M.I.S.); (D.D.V.)
- Department of Microbiology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
- Multidisciplinary Research Center on Antimicrobial Resistance (MULTI-REZ), Microbiology Department, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
- Clinical Analysis Laboratory, “Louis Turcanu” Emergency Clinical Hospital for Children, Iosif Nemoianu Street 2, 300011 Timisoara, Romania
| | - Florin George Horhat
- Department of Microbiology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
- Multidisciplinary Research Center on Antimicrobial Resistance (MULTI-REZ), Microbiology Department, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
- Clinical Analysis Laboratory, “Louis Turcanu” Emergency Clinical Hospital for Children, Iosif Nemoianu Street 2, 300011 Timisoara, Romania
| | - Iulia Cristina Bagiu
- Department of Microbiology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
- Multidisciplinary Research Center on Antimicrobial Resistance (MULTI-REZ), Microbiology Department, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
- Clinical Analysis Laboratory, “Louis Turcanu” Emergency Clinical Hospital for Children, Iosif Nemoianu Street 2, 300011 Timisoara, Romania
| | - Delia Ioana Horhat
- Department of ENT, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
| | - Mircea Mihai Diaconu
- Department of Obstetrics and Gynecology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (V.B.S.); (M.M.D.)
| |
Collapse
|
16
|
Sousa RAL, Yehia A, Abulseoud OA. Attenuation of ferroptosis as a potential therapeutic target for neuropsychiatric manifestations of post-COVID syndrome. Front Neurosci 2023; 17:1237153. [PMID: 37554293 PMCID: PMC10405289 DOI: 10.3389/fnins.2023.1237153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/10/2023] [Indexed: 08/10/2023] Open
Abstract
Coronavirus disease-19 (COVID-19), caused by severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), is associated with the persistence of pre-existing or the emergence of new neurological and psychiatric manifestations as a part of a multi-system affection known collectively as "post-COVID syndrome." Cognitive decline is the most prominent feature among these manifestations. The underlying neurobiological mechanisms remain under intense investigation. Ferroptosis is a form of cell death that results from the excessive accumulation of intracellular reactive iron, which mediates lipid peroxidation. The accumulation of lipid-based reactive oxygen species (ROS) and the impairment of glutathione peroxidase 4 (GPX4) activity trigger ferroptosis. The COVID-19-associated cytokine storm enhances the levels of circulating pro-inflammatory cytokines and causes immune-cell hyper-activation that is tightly linked to iron dysregulation. Severe COVID-19 presents with iron overload as one of the main features of its pathogenesis. Iron overload promotes a state of inflammation and immune dysfunction. This is well demonstrated by the strong association between COVID-19 severity and high levels of ferritin, which is a well-known inflammatory and iron overload biomarker. The dysregulation of iron, the high levels of lipid peroxidation biomarkers, and the inactivation of GPX4 in COVID-19 patients make a strong case for ferroptosis as a potential mechanism behind post-COVID neuropsychiatric deficits. Therefore, here we review the characteristics of iron and the attenuation of ferroptosis as a potential therapeutic target for neuropsychiatric post-COVID syndrome.
Collapse
Affiliation(s)
- Ricardo A. L. Sousa
- Department of Psychiatry and Psychology, Mayo Clinic Arizona, Phoenix, AZ, United States
| | - Asmaa Yehia
- Department of Psychiatry and Psychology, Mayo Clinic Arizona, Phoenix, AZ, United States
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Osama A. Abulseoud
- Department of Psychiatry and Psychology, Mayo Clinic Arizona, Phoenix, AZ, United States
- Department of Neuroscience, Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine, Phoenix, AZ, United States
| |
Collapse
|
17
|
di Flora DC, Dionizio A, Pereira HABS, Garbieri TF, Grizzo LT, Dionisio TJ, Leite ADL, Silva-Costa LC, Buzalaf NR, Reis FN, Pereira VBR, Rosa DMC, Dos Santos CF, Buzalaf MAR. Analysis of Plasma Proteins Involved in Inflammation, Immune Response/Complement System, and Blood Coagulation upon Admission of COVID-19 Patients to Hospital May Help to Predict the Prognosis of the Disease. Cells 2023; 12:1601. [PMID: 37371071 DOI: 10.3390/cells12121601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
The development of new approaches allowing for the early assessment of COVID-19 cases that are likely to become critical and the discovery of new therapeutic targets are urgently required. In this prospective cohort study, we performed proteomic and laboratory profiling of plasma from 163 COVID-19 patients admitted to Bauru State Hospital (Brazil) between 4 May 2020 and 4 July 2020. Plasma samples were collected upon admission for routine laboratory analyses and shotgun quantitative label-free proteomics. Based on the course of the disease, the patients were divided into three groups: (a) mild (n = 76) and (b) severe (n = 56) symptoms, whose patients were discharged without or with admission to an intensive care unit (ICU), respectively, and (c) critical (n = 31), a group consisting of patients who died after admission to an ICU. Based on our data, potential therapies for COVID-19 should target proteins involved in inflammation, the immune response and complement system, and blood coagulation. Other proteins that could potentially be employed in therapies against COVID-19 but that so far have not been associated with the disease are CD5L, VDBP, A1BG, C4BPA, PGLYRP2, SERPINC1, and APOH. Targeting these proteins' pathways might constitute potential new therapies or biomarkers of prognosis of the disease.
Collapse
Affiliation(s)
- Daniele Castro di Flora
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru 17012-901, Brazil
- Therapy and Diagnosis Unit, Bauru State Hospital, Bauru 17033-360, Brazil
| | - Aline Dionizio
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru 17012-901, Brazil
| | | | - Thais Francini Garbieri
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru 17012-901, Brazil
| | - Larissa Tercilia Grizzo
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru 17012-901, Brazil
| | - Thiago José Dionisio
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru 17012-901, Brazil
| | - Aline de Lima Leite
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE 68503, USA
| | - Licia C Silva-Costa
- Laboratory of Neuroproteomics, Institute of Biology, Department of Biochemistry and Tissue Biology, University of Campinas, Campinas 13083-862, Brazil
| | - Nathalia Rabelo Buzalaf
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru 17012-901, Brazil
| | - Fernanda Navas Reis
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru 17012-901, Brazil
| | | | | | - Carlos Ferreira Dos Santos
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru 17012-901, Brazil
| | | |
Collapse
|
18
|
Sokolov AV, Isakova-Sivak IN, Mezhenskaya DA, Kostevich VA, Gorbunov NP, Elizarova AY, Matyushenko VA, Berson YM, Grudinina NA, Kolmakov NN, Zabrodskaya YA, Komlev AS, Semak IV, Budevich AI, Rudenko LG, Vasilyev VB. Molecular mimicry of the receptor-binding domain of the SARS-CoV-2 spike protein: from the interaction of spike-specific antibodies with transferrin and lactoferrin to the antiviral effects of human recombinant lactoferrin. Biometals 2023; 36:437-462. [PMID: 36334191 PMCID: PMC9638208 DOI: 10.1007/s10534-022-00458-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 10/21/2022] [Indexed: 11/08/2022]
Abstract
The pathogenesis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection involves dysregulations of iron metabolism, and although the mechanism of this pathology is not yet fully understood, correction of iron metabolism pathways seems a promising pharmacological target. The previously observed effect of inhibiting SARS-CoV-2 infection by ferristatin II, an inducer of transferrin receptor 1 (TfR1) degradation, prompted the study of competition between Spike protein and TfR1 ligands, especially lactoferrin (Lf) and transferrin (Tf). We hypothesized molecular mimicry of Spike protein as cross-reactivity of Spike-specific antibodies with Tf and Lf. Thus, strong positive correlations (R2 > 0.95) were found between the level of Spike-specific IgG antibodies present in serum samples of COVID-19-recovered and Sputnik V-vaccinated individuals and their Tf-binding activity assayed with peroxidase-labeled anti-Tf. In addition, we observed cross-reactivity of Lf-specific murine monoclonal antibody (mAb) towards the SARS-CoV-2 Spike protein. On the other hand, the interaction of mAbs produced to the receptor-binding domain (RBD) of the Spike protein with recombinant RBD protein was disrupted by Tf, Lf, soluble TfR1, anti-TfR1 aptamer, as well as by peptides RGD and GHAIYPRH. Furthermore, direct interaction of RBD protein with Lf, but not Tf, was observed, with affinity of binding estimated by KD to be 23 nM and 16 nM for apo-Lf and holo-Lf, respectively. Treatment of Vero E6 cells with apo-Lf and holo-Lf (1-4 mg/mL) significantly inhibited SARS-CoV-2 replication of both Wuhan and Delta lineages. Protective effects of Lf on different arms of SARS-CoV-2-induced pathogenesis and possible consequences of cross-reactivity of Spike-specific antibodies are discussed.
Collapse
Affiliation(s)
- A V Sokolov
- Institute of Experimental Medicine, Academica Pavlova Str. 12, St. Petersburg, 197376, Russia.
| | - I N Isakova-Sivak
- Institute of Experimental Medicine, Academica Pavlova Str. 12, St. Petersburg, 197376, Russia
| | - D A Mezhenskaya
- Institute of Experimental Medicine, Academica Pavlova Str. 12, St. Petersburg, 197376, Russia
| | - V A Kostevich
- Institute of Experimental Medicine, Academica Pavlova Str. 12, St. Petersburg, 197376, Russia
| | - N P Gorbunov
- Institute of Experimental Medicine, Academica Pavlova Str. 12, St. Petersburg, 197376, Russia
| | - A Yu Elizarova
- Institute of Experimental Medicine, Academica Pavlova Str. 12, St. Petersburg, 197376, Russia
| | - V A Matyushenko
- Institute of Experimental Medicine, Academica Pavlova Str. 12, St. Petersburg, 197376, Russia
| | - Yu M Berson
- Institute of Experimental Medicine, Academica Pavlova Str. 12, St. Petersburg, 197376, Russia
| | - N A Grudinina
- Institute of Experimental Medicine, Academica Pavlova Str. 12, St. Petersburg, 197376, Russia
| | - N N Kolmakov
- Institute of Experimental Medicine, Academica Pavlova Str. 12, St. Petersburg, 197376, Russia
| | - Y A Zabrodskaya
- Smorodintsev Research Institute of Influenza, Russian Ministry of Health, Prof. Popova Str. 15/17, St. Petersburg, 197376, Russia
- Peter the Great Saint Petersburg Polytechnic University, 29 Ulitsa Polytechnicheskaya, 194064, Saint Petersburg, Russia
| | - A S Komlev
- Institute of Experimental Medicine, Academica Pavlova Str. 12, St. Petersburg, 197376, Russia
| | - I V Semak
- Department of Biochemistry, Faculty of Biology, Belarusian State University, Nezavisimisty Ave. 4, 220030, Minsk, Belarus
| | - A I Budevich
- Scientific and Practical Center of the National Academy of Sciences of Belarus for Animal Breeding, 11 Frunze Str., 222160, Zhodino, Belarus
| | - L G Rudenko
- Institute of Experimental Medicine, Academica Pavlova Str. 12, St. Petersburg, 197376, Russia
| | - V B Vasilyev
- Institute of Experimental Medicine, Academica Pavlova Str. 12, St. Petersburg, 197376, Russia
| |
Collapse
|
19
|
Akbari H, Taghizadeh-Hesary F. COVID-19 induced liver injury from a new perspective: Mitochondria. Mitochondrion 2023; 70:103-110. [PMID: 37054906 PMCID: PMC10088285 DOI: 10.1016/j.mito.2023.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/27/2023] [Accepted: 04/07/2023] [Indexed: 04/15/2023]
Abstract
Liver damage is a common sequela of COVID-19 (coronavirus disease 2019), worsening the clinical outcomes. However, the underlying mechanism of COVID-induced liver injury (CiLI) is still not determined. Given the crucial role of mitochondria in hepatocyte metabolism and the emerging evidence denoting SARS-CoV-2 can damage human cell mitochondria, in this mini-review, we hypothesized that CiLI happens following hepatocytes' mitochondrial dysfunction. To this end, we evaluated the histologic, pathophysiologic, transcriptomic, and clinical features of CiLI from the mitochondria' eye view. Severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2), the causative agent of COVID-19, can damage hepatocytes through direct cytopathic effects or indirectly after the profound inflammatory response. Upon entering the hepatocytes, the RNA and RNA transcripts of SARS-CoV-2 engages the mitochondria. This interaction can disrupt the mitochondrial electron transport chain. In other words, SARS-CoV-2 hijacks the hepatocytes' mitochondria to support its replication. In addition, this process can lead to an improper immune response against SARS-CoV-2. Besides, this review outlines how mitochondrial dysfunction can serve as a prelude to the COVID-associated cytokine storm. Thereafter, we indicate how the nexus between COVID-19 and mitochondria can fill the gap linking CiLI and its risk factors, including old age, male sex, and comorbidities. In conclusion, this concept stresses the importance of mitochondrial metabolism in hepatocyte damage in the context of COVID-19. It notes that boosting mitochondria biogenesis can possibly serve as a prophylactic and therapeutic approach for CiLI. Further studies can reveal this notion.
Collapse
Affiliation(s)
- Hassan Akbari
- Department of Pathology, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Traditional Medicine School, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzad Taghizadeh-Hesary
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Zhang YY, Ren KD, Luo XJ, Peng J. COVID-19-induced neurological symptoms: focus on the role of metal ions. Inflammopharmacology 2023; 31:611-631. [PMID: 36892679 PMCID: PMC9996599 DOI: 10.1007/s10787-023-01176-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 02/23/2023] [Indexed: 03/10/2023]
Abstract
Neurological symptoms are prevalent in both the acute and post-acute phases of coronavirus disease 2019 (COVID-19), and they are becoming a major concern for the prognosis of COVID-19 patients. Accumulation evidence has suggested that metal ion disorders occur in the central nervous system (CNS) of COVID-19 patients. Metal ions participate in the development, metabolism, redox and neurotransmitter transmission in the CNS and are tightly regulated by metal ion channels. COVID-19 infection causes neurological metal disorders and metal ion channels abnormal switching, subsequently resulting in neuroinflammation, oxidative stress, excitotoxicity, neuronal cell death, and eventually eliciting a series of COVID-19-induced neurological symptoms. Therefore, metal homeostasis-related signaling pathways are emerging as promising therapeutic targets for mitigating COVID-19-induced neurological symptoms. This review provides a summary for the latest advances in research related to the physiological and pathophysiological functions of metal ions and metal ion channels, as well as their role in COVID-19-induced neurological symptoms. In addition, currently available modulators of metal ions and their channels are also discussed. Collectively, the current work offers a few recommendations according to published reports and in-depth reflections to ameliorate COVID-19-induced neurological symptoms. Further studies need to focus on the crosstalk and interactions between different metal ions and their channels. Simultaneous pharmacological intervention of two or more metal signaling pathway disorders may provide clinical advantages in treating COVID-19-induced neurological symptoms.
Collapse
Affiliation(s)
- Yi-Yue Zhang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Kai-Di Ren
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xiu-Ju Luo
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, 410013, China.
| | - Jun Peng
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China.
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China.
| |
Collapse
|
21
|
Links between Vitamin K, Ferroptosis and SARS-CoV-2 Infection. Antioxidants (Basel) 2023; 12:antiox12030733. [PMID: 36978981 PMCID: PMC10045478 DOI: 10.3390/antiox12030733] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/27/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Ferroptosis is a recently discovered form of programmed cell death. It is characterized by the accumulation of iron and lipid hydroperoxides in cells. Vitamin K is known to have antioxidant properties and plays a role in reducing oxidative stress, particularly in lipid cell membranes. Vitamin K reduces the level of reactive oxygen species by modulating the expression of antioxidant enzymes. Additionally, vitamin K decreases inflammation and potentially prevents ferroptosis. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection leading to coronavirus disease 2019 (COVID-19) is associated with oxidant–antioxidant imbalance. Studies have shown that intensified ferroptosis occurs in various tissues and cells affected by COVID-19. Vitamin K supplementation during SARS-CoV-2 infection may have a positive effect on reducing the severity of the disease. Preliminary research suggests that vitamin K may reduce lipid peroxidation and inhibit ferroptosis, potentially contributing to its therapeutic effects in COVID-19 patients. The links between ferroptosis, vitamin K, and SARS-CoV-2 infection require further investigation, particularly in the context of developing potential treatment strategies for COVID-19.
Collapse
|
22
|
Atkins JL, Lucas MR, Pilling LC, Melzer D. Letter to the editor regarding: "A haemochromatosis-causing HFE mutation is associated with SARS-CoV-2 susceptibility in the Czech population" clinica chimica acta 538 (2023) 211-215. Clin Chim Acta 2023; 542:117271. [PMID: 36921681 PMCID: PMC10009995 DOI: 10.1016/j.cca.2023.117271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/23/2023] [Accepted: 02/23/2023] [Indexed: 03/14/2023]
Affiliation(s)
- Janice L Atkins
- Department of Clinical and Biomedical Sciences, University of Exeter, UK.
| | - Mitchell R Lucas
- Department of Clinical and Biomedical Sciences, University of Exeter, UK
| | - Luke C Pilling
- Department of Clinical and Biomedical Sciences, University of Exeter, UK
| | - David Melzer
- Department of Clinical and Biomedical Sciences, University of Exeter, UK
| |
Collapse
|
23
|
Gaiatto ACM, Bibo TA, de Godoy Moreira N, Raimundo JRS, da Costa Aguiar Alves B, Gascón T, Carvalho SS, Pereira EC, Fonseca FLA, da Veiga GL. COVID-19 compromises iron homeostasis: Transferrin as a target of investigation. J Trace Elem Med Biol 2023; 76:127109. [PMID: 36509021 PMCID: PMC9694355 DOI: 10.1016/j.jtemb.2022.127109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/26/2022] [Accepted: 11/18/2022] [Indexed: 11/26/2022]
Abstract
IMPORTANCE Since the beginning of the COVID-19 pandemic, numerous metabolic alterations have been observed in individuals with this disease. It is known that SARS-CoV-2 can mimic the action of hepcidin, altering intracellular iron metabolism, but gaps remain in the understanding of possible outcomes in other pathways involved in the iron cycle. OBJECTIVE To profile iron, ferritin and hepcidin levels and transferrin receptor gene expression in patients diagnosed with COVID-19 between June 2020 and September 2020. DESIGN, SETTING AND PARTICIPANTS Cross-sectional study that evaluated iron metabolism markers in 427 participants, 218 with COVID-19 and 209 without the disease. EXPOSURES The primary exposure was positive diagnose to COVID-19 in general population of Santo André and São Bernardo cities. The positive and negative diagnose were determinate through RT-qPCR. MAIN OUTCOMES AND MEASURES Devido a evidências de alterações do ciclo do ferro em pacientes diagnosticados com COVID-19 e devido a corregulação entre hepcidina e receptor de transferrina, uma análise da expressão gênica deste último, poderia trazer insights sobre o estado de ferro celular. A hipótese foi confirmada, mostrando aumento da expressão de receptor de transferrina concomitante com redução do nível de hepcidina circulante. RESULTS Serum iron presented lower values in individuals diagnosed with COVID-19, whereas serum ferritin presented much higher values in infected patients. Elderly subjects had lower serum iron levels and higher ferritin levels, and men with COVID-19 had higher ferritin values than women. Serum hepcidin was lower in the COVID-19 patient group and transferrin receptor gene expression was higher in the infected patient group compared to controls. CONCLUSIONS AND RELEVANCE COVID-19 causes changes in several iron cycle pathways, with iron and ferritin levels being markers that reflect the state and evolution of infection, as well as the prognosis of the disease. The increased expression of the transferrin receptor gene suggests increased iron internalization and the mimicry of hepcidin action by SARS-CoV-2, reduces iron export via ferroportin, which would explain the low circulating levels of iron by intracellular trapping.
Collapse
Affiliation(s)
| | - Thaciane Alkmim Bibo
- Laboratório de Análises Clínicas, Centro Universitário FMABC, Santo André, Brazil
| | | | | | | | - Thaís Gascón
- Laboratório de Análises Clínicas, Centro Universitário FMABC, Santo André, Brazil
| | | | | | - Fernando Luiz Affonso Fonseca
- Laboratório de Análises Clínicas, Centro Universitário FMABC, Santo André, Brazil; Departamento de Ciências Farmacêuticas, UNIFESP, Campus Diadema, Diadema, Brazil
| | | |
Collapse
|
24
|
Dufrusine B, Valentinuzzi S, Bibbò S, Damiani V, Lanuti P, Pieragostino D, Del Boccio P, D’Alessandro E, Rabottini A, Berghella A, Allocati N, Falasca K, Ucciferri C, Mucedola F, Di Perna M, Martino L, Vecchiet J, De Laurenzi V, Dainese E. Iron Dyshomeostasis in COVID-19: Biomarkers Reveal a Functional Link to 5-Lipoxygenase Activation. Int J Mol Sci 2022; 24:15. [PMID: 36613462 PMCID: PMC9819889 DOI: 10.3390/ijms24010015] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is characterized by a broad spectrum of clinical symptoms. After acute infection, some subjects develop a post-COVID-19 syndrome known as long-COVID. This study aims to recognize the molecular and functional mechanisms that occur in COVID-19 and long-COVID patients and identify useful biomarkers for the management of patients with COVID-19 and long-COVID. Here, we profiled the response to COVID-19 by performing a proteomic analysis of lymphocytes isolated from patients. We identified significant changes in proteins involved in iron metabolism using different biochemical analyses, considering ceruloplasmin (Cp), transferrin (Tf), hemopexin (HPX), lipocalin 2 (LCN2), and superoxide dismutase 1 (SOD1). Moreover, our results show an activation of 5-lipoxygenase (5-LOX) in COVID-19 and in long-COVID possibly through an iron-dependent post-translational mechanism. Furthermore, this work defines leukotriene B4 (LTB4) and lipocalin 2 (LCN2) as possible markers of COVID-19 and long-COVID and suggests novel opportunities for prevention and treatment.
Collapse
Affiliation(s)
- Beatrice Dufrusine
- Department of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Silvia Valentinuzzi
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Sandra Bibbò
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Verena Damiani
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Paola Lanuti
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- Department of Medicine and Aging Science, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Damiana Pieragostino
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Piero Del Boccio
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Ersilia D’Alessandro
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Alberto Rabottini
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Alessandro Berghella
- Department of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Nerino Allocati
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Katia Falasca
- Department of Medicine and Aging Science, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Clinic of Infectious Diseases, S.S. Annunziata Hospital, 66100 Chieti, Italy
| | - Claudio Ucciferri
- Clinic of Infectious Diseases, S.S. Annunziata Hospital, 66100 Chieti, Italy
| | - Francesco Mucedola
- Clinic of Infectious Diseases, S.S. Annunziata Hospital, 66100 Chieti, Italy
| | - Marco Di Perna
- Pneumology Department, “SS Annunziata” Hospital, 66100 Chieti, Italy
| | - Laura Martino
- Pneumology Department, “SS Annunziata” Hospital, 66100 Chieti, Italy
| | - Jacopo Vecchiet
- Department of Medicine and Aging Science, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Clinic of Infectious Diseases, S.S. Annunziata Hospital, 66100 Chieti, Italy
| | - Vincenzo De Laurenzi
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Enrico Dainese
- Department of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| |
Collapse
|