1
|
Rauschendorfer J, Yordanov Y, Dobrev P, Vankova R, Sykes R, Külheim C, Busov V. Overexpression of a developing xylem cDNA library in transgenic poplar generates high mutation rate specific to wood formation. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:1434-1443. [PMID: 31799778 PMCID: PMC7207001 DOI: 10.1111/pbi.13309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 12/16/2019] [Accepted: 11/18/2019] [Indexed: 06/10/2023]
Abstract
We investigated feasibility of the Full-length complementary DNA OvereXpression (FOX) system as a mutagenesis approach in poplar, using developing xylem tissue. The main goal was to assess the overall mutation rate and if the system will increase instances of mutants affected in traits linked to the xylem tissue. Indeed, we found a high mutation rate of 17.7%, whereas 80% of all mutants were significantly affected in cellulose, lignin and/or hemicellulose. Cell wall biosynthesis is a major process occurring during xylem development. Enrichment of mutants affected in cell wall composition suggests that the tissue source for the FOX library influenced the occurrence of mutants affected in a trait linked to this tissue. Additionally, we found that FLcDNAs from mutants affected in cell wall composition were homologous to genes known to be involved in cell wall biosynthesis and most recovered FLcDNAs corresponded to genes whose native expression was highest in xylem. We characterized in detail a mutant line with increased diameter. The phenotype was caused by a poplar homolog of LONELY GUY 1 (LOG1), which encodes an enzyme in cytokinin biosynthesis and significantly increased xylem proliferation. The causative role of LOG1 in the observed phenotype was further reaffirmed by elevated cytokinin concentration in the mutant and recapitulation overexpression experiment wherein multiple independent lines phenocopied the original FOX mutant. Our experiments show that the FOX approach can be efficiently used for gene discovery and molecular interrogation of traits specific to woody perennial growth and development.
Collapse
Affiliation(s)
- James Rauschendorfer
- College of Forest Resources and Environmental ScienceMichigan Technological UniversityHoughtonMIUSA
| | - Yordan Yordanov
- Department of BiologyEastern Illinois UniversityCharlestonILUSA
| | - Petre Dobrev
- Institute of Experimental BotanyCzech Academy of SciencesPragueCzech Republic
| | - Radomira Vankova
- Institute of Experimental BotanyCzech Academy of SciencesPragueCzech Republic
| | - Robert Sykes
- Nuclear Materials ScienceLos Alamos National LaboratoryLos AlamosNMUSA
| | - Carsten Külheim
- College of Forest Resources and Environmental ScienceMichigan Technological UniversityHoughtonMIUSA
| | - Victor Busov
- College of Forest Resources and Environmental ScienceMichigan Technological UniversityHoughtonMIUSA
| |
Collapse
|
2
|
High-throughput sequencing and de novo assembly of Brassica oleracea var. Capitata L. for transcriptome analysis. PLoS One 2014; 9:e92087. [PMID: 24682075 PMCID: PMC3969326 DOI: 10.1371/journal.pone.0092087] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 02/18/2014] [Indexed: 12/28/2022] Open
Abstract
Background The cabbage, Brassica oleracea var. capitata L., has a distinguishable phenotype within the genus Brassica. Despite the economic and genetic importance of cabbage, there is little genomic data for cabbage, and most studies of Brassica are focused on other species or other B. oleracea subspecies. The lack of genomic data for cabbage, a non-model organism, hinders research on its molecular biology. Hence, the construction of reliable transcriptomic data based on high-throughput sequencing technologies is needed to enhance our understanding of cabbage and provide genomic information for future work. Methodology/Principal Findings We constructed cDNAs from total RNA isolated from the roots, leaves, flowers, seedlings, and calcium-limited seedling tissues of two cabbage genotypes: 102043 and 107140. We sequenced a total of six different samples using the Illumina HiSeq platform, producing 40.5 Gbp of sequence data comprising 401,454,986 short reads. We assembled 205,046 transcripts (≥ 200 bp) using the Velvet and Oases assembler and predicted 53,562 loci from the transcripts. We annotated 35,274 of the loci with 55,916 plant peptides in the Phytozome database. The average length of the annotated loci was 1,419 bp. We confirmed the reliability of the sequencing assembly using reverse-transcriptase PCR to identify tissue-specific gene candidates among the annotated loci. Conclusion Our study provides valuable transcriptome sequence data for B. oleracea var. capitata L., offering a new resource for studying B. oleracea and closely related species. Our transcriptomic sequences will enhance the quality of gene annotation and functional analysis of the cabbage genome and serve as a material basis for future genomic research on cabbage. The sequencing data from this study can be used to develop molecular markers and to identify the extreme differences among the phenotypes of different species in the genus Brassica.
Collapse
|
3
|
Zhang Y, Wang XF, Ding ZG, Ma Q, Zhang GR, Zhang SL, Li ZK, Wu LQ, Zhang GY, Ma ZY. Transcriptome profiling of Gossypium barbadense inoculated with Verticillium dahliae provides a resource for cotton improvement. BMC Genomics 2013; 14:637. [PMID: 24053558 PMCID: PMC3849602 DOI: 10.1186/1471-2164-14-637] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Accepted: 09/13/2013] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Verticillium wilt, caused by the fungal pathogen Verticillium dahliae, is the most severe disease in cotton (Gossypium spp.), causing great lint losses worldwide. Disease management could be achieved in the field if genetically improved, resistant plants were used. However, the interaction between V. dahliae and cotton is a complicated process, and its molecular mechanism remains obscure. To understand better the defense response to this pathogen as a means for obtaining more tolerant cultivars, we monitored the transcriptome profiles of roots from resistant plants of G. barbadense cv. Pima90-53 that were challenged with V. dahliae. RESULTS In all, 46,192 high-quality expressed sequence tags (ESTs) were generated from a full-length cDNA library of G. barbadense. They were clustered and assembled into 23126 unigenes that comprised 2661 contigs and 20465 singletons. Those unigenes were assigned Gene Ontology terms and mapped to 289 KEGG pathways. A total of 3027 unigenes were found to be homologous to known defense-related genes in other plants. They were assigned to the functional classification of plant-pathogen interactions, including disease defenses and signal transduction. The branch of "SA→NPR1→TGA→PR-1→Disease resistance" was first discovered in the interaction of cotton-V. dahliae, indicating that this wilt process includes both biotrophic and necrotrophic stages. In all, 4936 genes coding for putative transcription factors (TF) were identified in our library. The most abundant TF family was the NAC group (527), followed by G2-like (440), MYB (372), BHLH (331), bZIP (271) ERF, C3H, and WRKY. We also analyzed the expression of genes involved in pathogen-associated molecular pattern (PAMP) recognition, the activation of effector-triggered immunity, TFs, and hormone biosynthesis, as well as genes that are pathogenesis-related, or have roles in signaling/regulatory functions and cell wall modification. Their differential expression patterns were compared among mock-/inoculated- and resistant/susceptible cotton. Our results suggest that the cotton defense response has significant transcriptional complexity and that large accumulations of defense-related transcripts may contribute to V. dahliae resistance in cotton. Therefore, these data provide a resource for cotton improvement through molecular breeding approaches. CONCLUSIONS This study generated a substantial amount of cotton transcript sequences that are related to defense responses against V. dahliae. These genomics resources and knowledge of important related genes contribute to our understanding of host-pathogen interactions and the defense mechanisms utilized by G. barbadense, a non-model plant system. These tools can be applied in establishing a modern breeding program that uses marker-assisted selections and oligonucleotide arrays to identify candidate genes that can be linked to valuable agronomic traits in cotton, including disease resistance.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Agriculture, North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, People’s Republic of China
| | - Xing Fen Wang
- Department of Agriculture, North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, People’s Republic of China
| | - Ze Guo Ding
- Department of Agriculture, North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, People’s Republic of China
| | - Qing Ma
- Department of Agriculture, North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, People’s Republic of China
| | - Gui Rong Zhang
- Department of Agriculture, North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, People’s Republic of China
| | - Shu Ling Zhang
- Department of Agriculture, North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, People’s Republic of China
| | - Zhi Kun Li
- Department of Agriculture, North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, People’s Republic of China
| | - Li Qiang Wu
- Department of Agriculture, North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, People’s Republic of China
| | - Gui Yin Zhang
- Department of Agriculture, North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, People’s Republic of China
| | - Zhi Ying Ma
- Department of Agriculture, North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, People’s Republic of China
| |
Collapse
|
4
|
Utsumi Y, Tanaka M, Morosawa T, Kurotani A, Yoshida T, Mochida K, Matsui A, Umemura Y, Ishitani M, Shinozaki K, Sakurai T, Seki M. Transcriptome analysis using a high-density oligomicroarray under drought stress in various genotypes of cassava: an important tropical crop. DNA Res 2012; 19:335-45. [PMID: 22619309 PMCID: PMC3415295 DOI: 10.1093/dnares/dss016] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cassava is an important crop that provides food security and income generation in many tropical countries and is known for its adaptability to various environmental conditions. Despite its global importance, the development of cassava microarray tools has not been well established. Here, we describe the development of a 60-mer oligonucleotide Agilent microarray representing ∼20,000 cassava genes and how it can be applied to expression profiling under drought stress using three cassava genotypes (MTAI16, MECU72 and MPER417-003). Our results identified about 1300 drought stress up-regulated genes in cassava and indicated that cassava has similar mechanisms for drought stress response and tolerance as other plant species. These results demonstrate that our microarray is a useful tool for analysing the cassava transcriptome and that it is applicable for various cassava genotypes.
Collapse
Affiliation(s)
- Yoshinori Utsumi
- Plant Genomic Network Research Team, RIKEN Plant Science Center, Tsurumi-ku, Yokohama, Kanagawa, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Abe H, Narusaka Y, Sasaki I, Hatakeyama K, Shin-I S, Narusaka M, Fukami-Kobayashi K, Matsumoto S, Kobayashi M. Development of full-length cDNAs from Chinese cabbage (Brassica rapa Subsp. pekinensis) and identification of marker genes for defence response. DNA Res 2011; 18:277-89. [PMID: 21745830 PMCID: PMC3158467 DOI: 10.1093/dnares/dsr018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2011] [Accepted: 05/25/2011] [Indexed: 11/13/2022] Open
Abstract
Arabidopsis belongs to the Brassicaceae family and plays an important role as a model plant for which researchers have developed fine-tuned genome resources. Genome sequencing projects have been initiated for other members of the Brassicaceae family. Among these projects, research on Chinese cabbage (Brassica rapa subsp. pekinensis) started early because of strong interest in this species. Here, we report the development of a library of Chinese cabbage full-length cDNA clones, the RIKEN BRC B. rapa full-length cDNA (BBRAF) resource, to accelerate research on Brassica species. We sequenced 10 000 BBRAF clones and confirmed 5476 independent clones. Most of these cDNAs showed high homology to Arabidopsis genes, but we also obtained more than 200 cDNA clones that lacked any sequence homology to Arabidopsis genes. We also successfully identified several possible candidate marker genes for plant defence responses from our analysis of the expression of the Brassica counterparts of Arabidopsis marker genes in response to salicylic acid and jasmonic acid. We compared gene expression of these markers in several Chinese cabbage cultivars. Our BBRAF cDNA resource will be publicly available from the RIKEN Bioresource Center and will help researchers to transfer Arabidopsis-related knowledge to Brassica crops.
Collapse
Affiliation(s)
- Hiroshi Abe
- Experimental Plant Division, Department of Biological Systems, RIKEN BioResource Center, Koyadai, Tsukuba, Ibaraki, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Wehner N, Weiste C, Dröge-Laser W. Molecular screening tools to study Arabidopsis transcription factors. FRONTIERS IN PLANT SCIENCE 2011; 2:68. [PMID: 22645547 PMCID: PMC3355788 DOI: 10.3389/fpls.2011.00068] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 10/08/2011] [Indexed: 05/08/2023]
Abstract
In the model plant Arabidopsis thaliana, more than 2000 genes are estimated to encode transcription factors (TFs), which clearly emphasizes the importance of transcriptional control. Although genomic approaches have generated large TF open reading frame (ORF) collections, only a limited number of these genes is functionally characterized, yet. This review evaluates strategies and methods to identify TF functions. In particular, we focus on two recently developed TF screening platforms, which make use of publically available GATEWAY(®)-compatible ORF collections. (1) The Arabidopsis thalianaTF ORF over-Expression (AtTORF-Ex) library provides pooled collections of transgenic lines over-expressing HA-tagged TF genes, which are suited for screening approaches to define TF functions in stress defense and development. (2) A high-throughput microtiter plate based protoplast transactivation (PTA) system has been established to screen for TFs which are regulating a given promoter:Luciferase construct in planta.
Collapse
Affiliation(s)
- Nora Wehner
- Julius-von-Sachs-Institute, University of WürzburgWürzburg, Germany
| | - Christoph Weiste
- Julius-von-Sachs-Institute, University of WürzburgWürzburg, Germany
| | - Wolfgang Dröge-Laser
- Julius-von-Sachs-Institute, University of WürzburgWürzburg, Germany
- *Correspondence: Wolfgang Dröge-Laser, Julius-von-Sachs-Institute, University of Würzburg, Julius-von-Sachs-Platz 2, D-97082 Würzburg, Germany. e-mail:
| |
Collapse
|
7
|
Kondou Y, Higuchi M, Ichikawa T, Matsui M. Application of full-length cDNA resources to gain-of-function technology for characterization of plant gene function. Methods Mol Biol 2011; 729:183-97. [PMID: 21365491 DOI: 10.1007/978-1-61779-065-2_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Generation and characterization of mutants are important for the investigation of gene function. Gain-of-function technology is one of the most useful approaches for the systematic production of mutant resources. Full-length cDNAs have been collected from various plant species and have become important resources for functional genomics. We have developed a novel gain-of-function technology for the identification of gene function using a full-length cDNA library, and this system has been named as FOX hunting system (Full-length cDNA Over-eXpressing gene hunting system). In this system, full-length cDNAs are randomly expressed in Arabidopsis. We also generated rice FOX Arabidopsis lines in which full-length cDNAs from rice were expressed in Arabidopsis, and we demonstrated that gene function derived from heterologous organisms can be analyzed systematically using the FOX hunting approach. In this protocol, we describe the process of generating Arabidopsis mutants expressing rice full-length cDNA libraries and the methods of identifying genes from the isolated mutants.
Collapse
|
8
|
Yoneda A, Ito T, Higaki T, Kutsuna N, Saito T, Ishimizu T, Osada H, Hasezawa S, Matsui M, Demura T. Cobtorin target analysis reveals that pectin functions in the deposition of cellulose microfibrils in parallel with cortical microtubules. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 64:657-67. [PMID: 21070417 DOI: 10.1111/j.1365-313x.2010.04356.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Cellulose and pectin are major components of primary cell walls in plants, and it is believed that their mechanical properties are important for cell morphogenesis. It has been hypothesized that cortical microtubules guide the movement of cellulose microfibril synthase in a direction parallel with the microtubules, but the mechanism by which this alignment occurs remains unclear. We have previously identified cobtorin as an inhibitor that perturbs the parallel relationship between cortical microtubules and nascent cellulose microfibrils. In this study, we searched for the protein target of cobtorin, and we found that overexpression of pectin methylesterase and polygalacturonase suppressed the cobtorin-induced cell-swelling phenotype. Furthermore, treatment with polygalacturonase restored the deposition of cellulose microfibrils in the direction parallel with cortical microtubules, and cobtorin perturbed the distribution of methylated pectin. These results suggest that control over the properties of pectin is important for the deposition of cellulose microfibrils and/or the maintenance of their orientation parallel with the cortical microtubules.
Collapse
Affiliation(s)
- Arata Yoneda
- Biomass Engineering Program, RIKEN, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Mochida K, Shinozaki K. Genomics and bioinformatics resources for crop improvement. PLANT & CELL PHYSIOLOGY 2010; 51:497-523. [PMID: 20208064 PMCID: PMC2852516 DOI: 10.1093/pcp/pcq027] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Accepted: 03/01/2010] [Indexed: 05/19/2023]
Abstract
Recent remarkable innovations in platforms for omics-based research and application development provide crucial resources to promote research in model and applied plant species. A combinatorial approach using multiple omics platforms and integration of their outcomes is now an effective strategy for clarifying molecular systems integral to improving plant productivity. Furthermore, promotion of comparative genomics among model and applied plants allows us to grasp the biological properties of each species and to accelerate gene discovery and functional analyses of genes. Bioinformatics platforms and their associated databases are also essential for the effective design of approaches making the best use of genomic resources, including resource integration. We review recent advances in research platforms and resources in plant omics together with related databases and advances in technology.
Collapse
|