1
|
Hashimoto T, Hashimoto K, Shindo H, Tsuboyama S, Miyakawa T, Tanokura M, Kuchitsu K. Enhanced Ca 2+ binding to EF-hands through phosphorylation of conserved serine residues activates MpRBOHB and chitin-triggered ROS production. PHYSIOLOGIA PLANTARUM 2023; 175:e14101. [PMID: 38148249 DOI: 10.1111/ppl.14101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/14/2023] [Indexed: 12/28/2023]
Abstract
NADPH oxidases/RBOHs catalyze apoplastic ROS production and act as key signaling nodes, integrating multiple signal transduction pathways regulating plant development and stress responses. Although RBOHs have been suggested to be activated by Ca2+ binding and phosphorylation by various protein kinases, a mechanism linking Ca2+ binding and phosphorylation in the activity regulation remained elusive. Chitin-triggered ROS production required cytosolic Ca2+ elevation and Ca2+ binding to MpRBOHB in a liverwort Marchantia polymorpha. Heterologous expression analysis of truncated variants revealed that a segment of the N-terminal cytosolic region highly conserved among land plant RBOHs encompassing the two EF-hand motifs is essential for the activation of MpRBOHB. Within the conserved regulatory domain, we have identified two Ser residues whose phosphorylation is critical for the activation in planta. Isothermal titration calorimetry analyses revealed that phosphorylation of the two Ser residues increased the Ca2+ binding affinity of MpRBOHB, while Ca2+ binding is indispensable for the activation, even if the two Ser residues are phosphorylated. Our findings shed light on a mechanism through which phosphorylation potentiates the Ca2+ -dependent activation of MpRBOHB, emphasizing the pivotal role of Ca2+ binding in mediating the Ca2+ and phosphorylation-driven activation of MpRBOHB, which is likely to represent a fundamental mechanism conserved among land plant RBOHs.
Collapse
Affiliation(s)
- Takafumi Hashimoto
- Department of Applied Biological Science, Tokyo University of Science, Chiba, Japan
| | - Kenji Hashimoto
- Department of Applied Biological Science, Tokyo University of Science, Chiba, Japan
| | - Hiroki Shindo
- Department of Applied Biological Science, Tokyo University of Science, Chiba, Japan
| | - Shoko Tsuboyama
- Department of Applied Biological Science, Tokyo University of Science, Chiba, Japan
| | - Takuya Miyakawa
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Masaru Tanokura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazuyuki Kuchitsu
- Department of Applied Biological Science, Tokyo University of Science, Chiba, Japan
| |
Collapse
|
2
|
Toyota M, Betsuyaku S. In vivo Imaging Enables Understanding of Seamless Plant Defense Responses to Wounding and Pathogen Attack. PLANT & CELL PHYSIOLOGY 2022; 63:1391-1404. [PMID: 36165346 DOI: 10.1093/pcp/pcac135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/31/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Plants are exposed to varied biotic stresses, including sequential or simultaneous attack by insects and pathogens. To overcome these complex stresses, plants must perceive each of the stresses, then integrate and relay the information throughout the plant body and eventually activate local and systemic resistance responses. Previous molecular genetic studies identified jasmonic acid and salicylic acid as key plant hormones of wound and immune responses. These hormones, combined with their antagonistic interaction, play critical roles in the initiation and regulation of defense responses against insects and pathogens. Aside from molecular and genetic information, the latest in vivo imaging technology has revealed that plant defense responses are regulated spatially and temporally. In this review, we summarize the current knowledge of local and systemic defense responses against wounding and diseases with a focus on past and recent advances in imaging technologies. We discuss how imaging-based multiparametric analysis has improved our understanding of the spatiotemporal regulation of dynamic plant stress responses. We also emphasize the importance of compiling the knowledge generated from individual studies on plant wounding and immune responses for a more seamless understanding of plant defense responses in the natural environment.
Collapse
Affiliation(s)
- Masatsugu Toyota
- Department of Biochemistry and Molecular Biology, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, 338-8570 Japan
- Suntory Rising Stars Encouragement Program in Life Sciences (SunRiSE), Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto, 619-0284 Japan
- Department of Botany, University of Wisconsin, 430 Lincoln Drive, Madison, WI 53706, USA
| | - Shigeyuki Betsuyaku
- Department of Plant Life Science, Faculty of Agriculture, Ryukoku University, 1-5 Yokotani, Seta Oe-cho, Otsu, Shiga, 520-2194 Japan
| |
Collapse
|
3
|
Giridhar M, Meier B, Imani J, Kogel KH, Peiter E, Vothknecht UC, Chigri F. Comparative analysis of stress-induced calcium signals in the crop species barley and the model plant Arabidopsis thaliana. BMC PLANT BIOLOGY 2022; 22:447. [PMID: 36114461 PMCID: PMC9482192 DOI: 10.1186/s12870-022-03820-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Plants are continuously exposed to changing environmental conditions and biotic attacks that affect plant growth. In crops, the inability to respond appropriately to stress has strong detrimental effects on agricultural production and yield. Ca2+ signalling plays a fundamental role in the response of plants to most abiotic and biotic stresses. However, research on stimulus-specific Ca2+ signals has mostly been pursued in Arabidopsis thaliana, while in other species these events are little investigated . RESULTS In this study, we introduced the Ca2+ reporter-encoding gene APOAEQUORIN into the crop species barley (Hordeum vulgare). Measurements of the dynamic changes in [Ca2+]cyt in response to various stimuli such as NaCl, mannitol, H2O2, and flagellin 22 (flg22) revealed the occurrence of dose- as well as tissue-dependent [Ca2+]cyt transients. Moreover, the Ca2+ signatures were unique for each stimulus, suggesting the involvement of different Ca2+ signalling components in the corresponding stress response. Alongside, the barley Ca2+ signatures were compared to those produced by the phylogenetically distant model plant Arabidopsis. Notable differences in temporal kinetics and dose responses were observed, implying species-specific differences in stress response mechanisms. The plasma membrane Ca2+ channel blocker La3+ strongly inhibited the [Ca2+]cyt response to all tested stimuli, indicating a critical role of extracellular Ca2+ in the induction of stress-associated Ca2+ signatures in barley. Moreover, by analysing spatio-temporal dynamics of the [Ca2+]cyt transients along the developmental gradient of the barley leaf blade we demonstrate that different parts of the barley leaf show quantitative differences in [Ca2+]cyt transients in response to NaCl and H2O2. There were only marginal differences in the response to flg22, indicative of developmental stage-dependent Ca2+ responses specifically to NaCl and H2O2. CONCLUSION This study reveals tissue-specific Ca2+ signals with stimulus-specific kinetics in the crop species barley, as well as quantitative differences along the barley leaf blade. A number of notable differences to the model plants Arabidopsis may be linked to different stimulus sensitivity. These transgenic barley reporter lines thus present a valuable tool to further analyse mechanisms of Ca2+ signalling in this crop and to gain insights into the variation of Ca2+-dependent stress responses between stress-susceptible and -resistant species.
Collapse
Affiliation(s)
- Maya Giridhar
- Plant Cell Biology, IZMB, University of Bonn, Kirschallee 1, D-53115, Bonn, Germany
| | - Bastian Meier
- Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, Betty Heimann Str. 3, D-06120, Halle (Saale), Germany
| | - Jafargholi Imani
- Research Centre for BioSystems, Land Use and Nutrition (IFZ), Institute for Phytopathology, Justus Liebig University Gießen, Heinrich-Buff-Ring 26-32, D-35392, Gießen, Germany
| | - Karl-Heinz Kogel
- Research Centre for BioSystems, Land Use and Nutrition (IFZ), Institute for Phytopathology, Justus Liebig University Gießen, Heinrich-Buff-Ring 26-32, D-35392, Gießen, Germany
| | - Edgar Peiter
- Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, Betty Heimann Str. 3, D-06120, Halle (Saale), Germany.
| | - Ute C Vothknecht
- Plant Cell Biology, IZMB, University of Bonn, Kirschallee 1, D-53115, Bonn, Germany.
| | - Fatima Chigri
- Plant Cell Biology, IZMB, University of Bonn, Kirschallee 1, D-53115, Bonn, Germany
| |
Collapse
|
4
|
Rice Lesion Mimic Mutants (LMM): The Current Understanding of Genetic Mutations in the Failure of ROS Scavenging during Lesion Formation. PLANTS 2021; 10:plants10081598. [PMID: 34451643 PMCID: PMC8400881 DOI: 10.3390/plants10081598] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/26/2021] [Accepted: 07/30/2021] [Indexed: 01/02/2023]
Abstract
Rice lesion mimic mutants (LMMs) form spontaneous lesions on the leaves during vegetative growth without pathogenic infections. The rice LMM group includes various mutants, including spotted leaf mutants, brown leaf mutants, white-stripe leaf mutants, and other lesion-phenotypic mutants. These LMM mutants exhibit a common phenotype of lesions on the leaves linked to chloroplast destruction caused by the eruption of reactive oxygen species (ROS) in the photosynthesis process. This process instigates the hypersensitive response (HR) and programmed cell death (PCD), resulting in lesion formation. The reasons for lesion formation have been studied extensively in terms of genetics and molecular biology to understand the pathogen and stress responses. In rice, the lesion phenotypes of most rice LMMs are inherited according to the Mendelian principles of inheritance, which remain in the subsequent generations. These rice LMM genetic traits have highly developed innate self-defense mechanisms. Thus, although rice LMM plants have undesirable agronomic traits, the genetic principles of LMM phenotypes can be used to obtain high grain yields by deciphering the efficiency of photosynthesis, disease resistance, and environmental stress responses. From these ailing rice LMM plants, rice geneticists have discovered novel proteins and physiological causes of ROS in photosynthesis and defense mechanisms. This review discusses recent studies on rice LMMs for the Mendelian inheritances, molecular genetic mapping, and the genetic definition of each mutant gene.
Collapse
|
5
|
Zhang Y, Wang Y, Taylor JL, Jiang Z, Zhang S, Mei F, Wu Y, Wu P, Ni J. Aequorin-based luminescence imaging reveals differential calcium signalling responses to salt and reactive oxygen species in rice roots. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2535-45. [PMID: 25754405 PMCID: PMC4986864 DOI: 10.1093/jxb/erv043] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
It is well established that both salt and reactive oxygen species (ROS) stresses are able to increase the concentration of cytosolic free Ca(2+) ([Ca(2+)]i), which is caused by the flux of calcium (Ca(2+)). However, the differences between these two processes are largely unknown. Here, we introduced recombinant aequorin into rice (Oryza sativa) and examined the change in [Ca(2+)]i in response to salt and ROS stresses. The transgenic rice harbouring aequorin showed strong luminescence in roots when treated with exogenous Ca(2+). Considering the histological differences in roots between rice and Arabidopsis, we reappraised the discharging solution, and suggested that the percentage of ethanol should be 25%. Different concentrations of NaCl induced immediate [Ca(2+)]i spikes with the same durations and phases. In contrast, H₂O₂ induced delayed [Ca(2+)]i spikes with different peaks according to the concentrations of H₂O₂. According to the Ca(2+) inhibitor research, we also showed that the sources of Ca(2+) induced by NaCl and H₂O₂ are different. Furthermore, we evaluated the contribution of [Ca(2+)]i responses in the NaCl- and H₂O₂-induced gene expressions respectively, and present a Ca(2+)- and H₂O₂-mediated molecular signalling model for the initial response to NaCl in rice.
Collapse
Affiliation(s)
- Yanyan Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Yifeng Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou 310058, China
| | - Jemma L Taylor
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Zhonghao Jiang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Shu Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Fengling Mei
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Yunrong Wu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou 310058, China
| | - Ping Wu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou 310058, China
| | - Jun Ni
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| |
Collapse
|
6
|
Yu Z, Taylor JL, He Y, Ni J. Enlightenment on the aequorin-based platform for screening Arabidopsis stress sensory channels related to calcium signaling. PLANT SIGNALING & BEHAVIOR 2015; 10:e1057366. [PMID: 26336841 PMCID: PMC4883862 DOI: 10.1080/15592324.2015.1057366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 05/23/2015] [Accepted: 05/27/2015] [Indexed: 06/05/2023]
Abstract
Free calcium ions (Ca(2+)) are an important signal molecule in response to a large array of external stimuli encountered by plants. Using the aequorin-based Ca(2+) recording system, tremendous progress has been made in understanding the Ca(2+) responses to biotic or abiotic stresses in dicotyledonous Arabidopsis. However, due to the lack of a similar detection system, little information has been obtained from the monocotyledonous rice (Oryza sativa). Recombinant aequorin has been introduced into rice, and the Ca(2+) responses to NaCl and H2O2 in rice roots were characterized. Although rice calcium signal sensor research has just started, the transgenic rice expressing aequorin provides a good platform to study rice adapted to different environmental conditions.
Collapse
Affiliation(s)
- Zhiming Yu
- College of Life and Environmental Sciences; Hangzhou Normal University; Hangzhou, China
| | - Jemma L Taylor
- School of Life Sciences; Gibbet Hill Campus; University of Warwick; Coventry, United Kingdom
| | - Yue He
- College of Life and Environmental Sciences; Hangzhou Normal University; Hangzhou, China
| | - Jun Ni
- College of Life and Environmental Sciences; Hangzhou Normal University; Hangzhou, China
| |
Collapse
|
7
|
Bruggeman Q, Raynaud C, Benhamed M, Delarue M. To die or not to die? Lessons from lesion mimic mutants. FRONTIERS IN PLANT SCIENCE 2015; 6:24. [PMID: 25688254 PMCID: PMC4311611 DOI: 10.3389/fpls.2015.00024] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 01/12/2015] [Indexed: 05/19/2023]
Abstract
Programmed cell death (PCD) is a ubiquitous genetically regulated process consisting in an activation of finely controlled signaling pathways that lead to cellular suicide. Although some aspects of PCD control appear evolutionary conserved between plants, animals and fungi, the extent of conservation remains controversial. Over the last decades, identification and characterization of several lesion mimic mutants (LMM) has been a powerful tool in the quest to unravel PCD pathways in plants. Thanks to progress in molecular genetics, mutations causing the phenotype of a large number of LMM and their related suppressors were mapped, and the identification of the mutated genes shed light on major pathways in the onset of plant PCD such as (i) the involvements of chloroplasts and light energy, (ii) the roles of sphingolipids and fatty acids, (iii) a signal perception at the plasma membrane that requires efficient membrane trafficking, (iv) secondary messengers such as ion fluxes and ROS and (v) the control of gene expression as the last integrator of the signaling pathways.
Collapse
Affiliation(s)
- Quentin Bruggeman
- Institut de Biologie des Plantes, UMR CNRS 8618, Université Paris-Sud, Saclay Plant SciencesOrsay, France
| | - Cécile Raynaud
- Institut de Biologie des Plantes, UMR CNRS 8618, Université Paris-Sud, Saclay Plant SciencesOrsay, France
| | - Moussa Benhamed
- Institut de Biologie des Plantes, UMR CNRS 8618, Université Paris-Sud, Saclay Plant SciencesOrsay, France
- Division of Biological and Environmental Sciences and Engineering, Center for Desert Agriculture, King Abdullah University of Science and TechnologyThuwal, Saudi Arabia
| | - Marianne Delarue
- Institut de Biologie des Plantes, UMR CNRS 8618, Université Paris-Sud, Saclay Plant SciencesOrsay, France
- *Correspondence: Marianne Delarue, Institut de Biologie des Plantes, UMR CNRS 8618, Université Paris-Sud, Saclay Plant Sciences, Bâtiment 630, Route de Noetzlin, 91405 Orsay Cedex, France e-mail:
| |
Collapse
|
8
|
Maintz J, Cavdar M, Tamborski J, Kwaaitaal M, Huisman R, Meesters C, Kombrink E, Panstruga R. Comparative Analysis of MAMP-induced Calcium Influx in Arabidopsis Seedlings and Protoplasts. ACTA ACUST UNITED AC 2014; 55:1813-25. [DOI: 10.1093/pcp/pcu112] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
9
|
Kurusu T, Saito K, Horikoshi S, Hanamata S, Negi J, Yagi C, Kitahata N, Iba K, Kuchitsu K. An S-type anion channel SLAC1 is involved in cryptogein-induced ion fluxes and modulates hypersensitive responses in tobacco BY-2 cells. PLoS One 2013; 8:e70623. [PMID: 23950973 PMCID: PMC3741279 DOI: 10.1371/journal.pone.0070623] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 06/19/2013] [Indexed: 01/01/2023] Open
Abstract
Pharmacological evidence suggests that anion channel-mediated plasma membrane anion effluxes are crucial in early defense signaling to induce immune responses and hypersensitive cell death in plants. However, their molecular bases and regulation remain largely unknown. We overexpressed Arabidopsis SLAC1, an S-type anion channel involved in stomatal closure, in cultured tobacco BY-2 cells and analyzed the effect on cryptogein-induced defense responses including fluxes of Cl(-) and other ions, production of reactive oxygen species (ROS), gene expression and hypersensitive responses. The SLAC1-GFP fusion protein was localized at the plasma membrane in BY-2 cells. Overexpression of SLAC1 enhanced cryptogein-induced Cl(-) efflux and extracellular alkalinization as well as rapid/transient and slow/prolonged phases of NADPH oxidase-mediated ROS production, which was suppressed by an anion channel inhibitor, DIDS. The overexpressor also showed enhanced sensitivity to cryptogein to induce downstream immune responses, including the induction of defense marker genes and the hypersensitive cell death. These results suggest that SLAC1 expressed in BY-2 cells mediates cryptogein-induced plasma membrane Cl(-) efflux to positively modulate the elicitor-triggered activation of other ion fluxes, ROS as well as a wide range of defense signaling pathways. These findings shed light on the possible involvement of the SLAC/SLAH family anion channels in cryptogein signaling to trigger the plasma membrane ion channel cascade in the plant defense signal transduction network.
Collapse
Affiliation(s)
- Takamitsu Kurusu
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba, Japan
- Research Institute for Science and Technology, Tokyo University of Science, Noda, Chiba, Japan
- School of Bioscience and Biotechnology, Tokyo University of Technology, Hachioji, Tokyo, Japan
| | - Katsunori Saito
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba, Japan
| | - Sonoko Horikoshi
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba, Japan
| | - Shigeru Hanamata
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba, Japan
| | - Juntaro Negi
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Chikako Yagi
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba, Japan
| | - Nobutaka Kitahata
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba, Japan
| | - Koh Iba
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Kazuyuki Kuchitsu
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba, Japan
- Research Institute for Science and Technology, Tokyo University of Science, Noda, Chiba, Japan
| |
Collapse
|
10
|
Kurusu T, Hamada H, Koyano T, Kuchitsu K. Intracellular localization and physiological function of a rice Ca²⁺-permeable channel OsTPC1. PLANT SIGNALING & BEHAVIOR 2012; 7:1428-30. [PMID: 22990444 PMCID: PMC3548864 DOI: 10.4161/psb.22086] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Two-pore channels (TPCs) are cation channels with a voltage-sensor domain conserved in plants and animals. Rice OsTPC1 is predominantly localized to the plasma membrane (PM), and assumed to play an important role as a Ca²⁺-permeable cation channel in the regulation of cytosolic Ca²⁺ rise and innate immune responses including hypersensitive cell death and phytoalexin biosynthesis in cultured rice cells triggered by a fungal elicitor, xylanase from Trichoderma viride. In contrast, Arabidopsis AtTPC1 is localized to the vacuolar membrane (VM). To gain further insights into the intracellular localization of OsTPC1, we stably expressed OsTPC1-GFP in tobacco BY-2 cells. Confocal imaging and membrane fractionation revealed that, unlike in rice cells, the majority of OsTPC1-GFP fusion protein was targeted to the VM in tobacco BY-2 cells. Intracellular localization and functions of the plant TPC family is discussed.
Collapse
Affiliation(s)
- Takamitsu Kurusu
- Department of Applied Biological Science; Tokyo University of Science; 2641 Yamazaki, Noda, Chiba, Japan
- Research Institute for Science and Technology; Tokyo University of Science; 2641 Yamazaki, Noda, Chiba, Japan
| | - Haruyasu Hamada
- Department of Applied Biological Science; Tokyo University of Science; 2641 Yamazaki, Noda, Chiba, Japan
| | - Tomoko Koyano
- Department of Applied Biological Science; Tokyo University of Science; 2641 Yamazaki, Noda, Chiba, Japan
| | - Kazuyuki Kuchitsu
- Department of Applied Biological Science; Tokyo University of Science; 2641 Yamazaki, Noda, Chiba, Japan
- Research Institute for Science and Technology; Tokyo University of Science; 2641 Yamazaki, Noda, Chiba, Japan
| |
Collapse
|
11
|
Berkey R, Bendigeri D, Xiao S. Sphingolipids and plant defense/disease: the "death" connection and beyond. FRONTIERS IN PLANT SCIENCE 2012; 3:68. [PMID: 22639658 PMCID: PMC3355615 DOI: 10.3389/fpls.2012.00068] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 03/22/2012] [Indexed: 05/19/2023]
Abstract
Sphingolipids comprise a major class of structural materials and lipid signaling molecules in all eukaryotic cells. Over the past two decades, there has been a phenomenal growth in the study of sphingolipids (i.e., sphingobiology) at an average rate of ∼1000 research articles per year. Sphingolipid studies in plants, though accounting for only a small fraction (∼6%) of the total number of publications, have also enjoyed proportionally rapid growth in the past decade. Concomitant with the growth of sphingobiology, there has also been tremendous progress in our understanding of the molecular mechanisms of plant innate immunity. In this review, we (i) cross examine and analyze the major findings that establish and strengthen the intimate connections between sphingolipid metabolism and plant programmed cell death (PCD) associated with plant defense or disease; (ii) highlight and compare key bioactive sphingolipids involved in the regulation of plant PCD and possibly defense; (iii) discuss the potential role of sphingolipids in polarized membrane/protein trafficking and formation of lipid rafts as subdomains of cell membranes in relation to plant defense; and (iv) where possible, attempt to identify potential parallels for immunity-related mechanisms involving sphingolipids across kingdoms.
Collapse
Affiliation(s)
- Robert Berkey
- Institute for Bioscience and Biotechnology Research, University of MarylandRockville, MD, USA
- Department of Plant Sciences and Landscape Architecture, University of MarylandCollege Park, MD, USA
| | - Dipti Bendigeri
- Institute for Bioscience and Biotechnology Research, University of MarylandRockville, MD, USA
- Department of Plant Sciences and Landscape Architecture, University of MarylandCollege Park, MD, USA
| | - Shunyuan Xiao
- Institute for Bioscience and Biotechnology Research, University of MarylandRockville, MD, USA
- Department of Plant Sciences and Landscape Architecture, University of MarylandCollege Park, MD, USA
| |
Collapse
|
12
|
Hamada H, Kurusu T, Okuma E, Nokajima H, Kiyoduka M, Koyano T, Sugiyama Y, Okada K, Koga J, Saji H, Miyao A, Hirochika H, Yamane H, Murata Y, Kuchitsu K. Regulation of a proteinaceous elicitor-induced Ca2+ influx and production of phytoalexins by a putative voltage-gated cation channel, OsTPC1, in cultured rice cells. J Biol Chem 2012; 287:9931-9939. [PMID: 22270358 DOI: 10.1074/jbc.m111.337659] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Pathogen/microbe- or plant-derived signaling molecules (PAMPs/MAMPs/DAMPs) or elicitors induce increases in the cytosolic concentration of free Ca(2+) followed by a series of defense responses including biosynthesis of antimicrobial secondary metabolites called phytoalexins; however, the molecular links and regulatory mechanisms of the phytoalexin biosynthesis remains largely unknown. A putative voltage-gated cation channel, OsTPC1 has been shown to play a critical role in hypersensitive cell death induced by a fungal xylanase protein (TvX) in suspension-cultured rice cells. Here we show that TvX induced a prolonged increase in cytosolic Ca(2+), mainly due to a Ca(2+) influx through the plasma membrane. Membrane fractionation by two-phase partitioning and immunoblot analyses revealed that OsTPC1 is localized predominantly at the plasma membrane. In retrotransposon-insertional Ostpc1 knock-out cell lines harboring a Ca(2+)-sensitive photoprotein, aequorin, TvX-induced Ca(2+) elevation was significantly impaired, which was restored by expression of OsTPC1. TvX-induced production of major diterpenoid phytoalexins and the expression of a series of diterpene cyclase genes involved in phytoalexin biosynthesis were also impaired in the Ostpc1 cells. Whole cell patch clamp analyses of OsTPC1 heterologously expressed in HEK293T cells showed its voltage-dependent Ca(2+)-permeability. These results suggest that OsTPC1 plays a crucial role in TvX-induced Ca(2+) influx as a plasma membrane Ca(2+)-permeable channel consequently required for the regulation of phytoalexin biosynthesis in cultured rice cells.
Collapse
Affiliation(s)
- Haruyasu Hamada
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Takamitsu Kurusu
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba 278-8510, Japan; Research Institute for Science and Technology (RIST), Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Eiji Okuma
- Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Hiroshi Nokajima
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Masahiro Kiyoduka
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Tomoko Koyano
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Yoshimi Sugiyama
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Kazunori Okada
- Biotechnology Research Center, University of Tokyo, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Jinichiro Koga
- Food Science Research Laboratories, Meiji Co., Ltd., 5-3-1, Chiyoda, Sakado, Saitama 350-0289, Japan
| | - Hikaru Saji
- Environmental Biology Division, National Institute for Environmental Studies, Tsukuba, Ibaraki, 305-8506 Japan, and
| | - Akio Miyao
- Division of Genome and Biodiversity Research, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan
| | - Hirohiko Hirochika
- Division of Genome and Biodiversity Research, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan
| | - Hisakazu Yamane
- Biotechnology Research Center, University of Tokyo, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yoshiyuki Murata
- Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Kazuyuki Kuchitsu
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba 278-8510, Japan; Research Institute for Science and Technology (RIST), Tokyo University of Science, Noda, Chiba 278-8510, Japan,.
| |
Collapse
|
13
|
Kurusu T, Nishikawa D, Yamazaki Y, Gotoh M, Nakano M, Hamada H, Yamanaka T, Iida K, Nakagawa Y, Saji H, Shinozaki K, Iida H, Kuchitsu K. Plasma membrane protein OsMCA1 is involved in regulation of hypo-osmotic shock-induced Ca2+ influx and modulates generation of reactive oxygen species in cultured rice cells. BMC PLANT BIOLOGY 2012; 12:11. [PMID: 22264357 PMCID: PMC3313898 DOI: 10.1186/1471-2229-12-11] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 01/23/2012] [Indexed: 05/18/2023]
Abstract
BACKGROUND Mechanosensing and its downstream responses are speculated to involve sensory complexes containing Ca2+-permeable mechanosensitive channels. On recognizing osmotic signals, plant cells initiate activation of a widespread signal transduction network that induces second messengers and triggers inducible defense responses. Characteristic early signaling events include Ca2+ influx, protein phosphorylation and generation of reactive oxygen species (ROS). Pharmacological analyses show Ca2+ influx mediated by mechanosensitive Ca2+ channels to influence induction of osmotic signals, including ROS generation. However, molecular bases and regulatory mechanisms for early osmotic signaling events remain poorly elucidated. RESULTS We here identified and investigated OsMCA1, the sole rice homolog of putative Ca2+-permeable mechanosensitive channels in Arabidopsis (MCAs). OsMCA1 was specifically localized at the plasma membrane. A promoter-reporter assay suggested that OsMCA1 mRNA is widely expressed in seed embryos, proximal and apical regions of shoots, and mesophyll cells of leaves and roots in rice. Ca2+ uptake was enhanced in OsMCA1-overexpressing suspension-cultured cells, suggesting that OsMCA1 is involved in Ca2+ influx across the plasma membrane. Hypo-osmotic shock-induced ROS generation mediated by NADPH oxidases was also enhanced in OsMCA1-overexpressing cells. We also generated and characterized OsMCA1-RNAi transgenic plants and cultured cells; OsMCA1-suppressed plants showed retarded growth and shortened rachises, while OsMCA1-suppressed cells carrying Ca2+-sensitive photoprotein aequorin showed partially impaired changes in cytosolic free Ca2+ concentration ([Ca2+]cyt) induced by hypo-osmotic shock and trinitrophenol, an activator of mechanosensitive channels. CONCLUSIONS We have identified a sole MCA ortholog in the rice genome and developed both overexpression and suppression lines. Analyses of cultured cells with altered levels of this putative Ca2+-permeable mechanosensitive channel indicate that OsMCA1 is involved in regulation of plasma membrane Ca2+ influx and ROS generation induced by hypo-osmotic stress in cultured rice cells. These findings shed light on our understanding of mechanical sensing pathways.
Collapse
Affiliation(s)
- Takamitsu Kurusu
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
- Research Institute for Science and Technology (RIST), Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Daisuke Nishikawa
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Yukari Yamazaki
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Mariko Gotoh
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Masataka Nakano
- Department of Biology, Tokyo Gakugei University, Koganei, Tokyo 184-8501, Japan
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Haruyasu Hamada
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Takuya Yamanaka
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Kazuko Iida
- Biomembrane Laboratory, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan
| | - Yuko Nakagawa
- Department of Biology, Tokyo Gakugei University, Koganei, Tokyo 184-8501, Japan
| | - Hikaru Saji
- Environmental Biology Division, National Institute for Environmental Studies, Tsukuba, Ibaraki, 305-8506, Japan
| | - Kazuo Shinozaki
- RIKEN Plant Science Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Hidetoshi Iida
- Department of Biology, Tokyo Gakugei University, Koganei, Tokyo 184-8501, Japan
| | - Kazuyuki Kuchitsu
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
- Research Institute for Science and Technology (RIST), Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
14
|
Lanteri ML, Lamattina L, Laxalt AM. Mechanisms of xylanase-induced nitric oxide and phosphatidic acid production in tomato cells. PLANTA 2011; 234:845-55. [PMID: 21643989 DOI: 10.1007/s00425-011-1446-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 05/18/2011] [Indexed: 05/20/2023]
Abstract
The second messenger nitric oxide (NO), phosphatidic acid (PA) and reactive oxygen species (ROS) are involved in the plant defense response during plant-pathogen interactions. NO has been shown to participate in PA production in response to the pathogen-associated molecular pattern xylanase in tomato cell suspensions. Defense responses downstream of PA include ROS production. The goal of this work was to study the signaling mechanisms involved in PA production during the defense responses triggered by xylanase and mediated by NO in the suspension-cultured tomato cells. We analyzed the participation of protein kinases, guanylate cyclase and the NO-mediated posttranslational modification S-nitrosylation, by means of pharmacology and biochemistry. We showed that NO, PA and ROS levels are significantly diminished by treatment with the general protein kinase inhibitor staurosporine. This indicates that xylanase-induced protein phosphorylation events might be the important components leading to NO formation, and hence for the downstream regulation of PA and ROS levels. When assayed, a guanylate cyclase inhibitor or a cGMP analog did not alter the PA accumulation. These results suggest that a cGMP-mediated pathway is not involved in xylanase-induced PA formation. Finally, the inhibition of protein S-nitrosylation did not affect NO formation but compromised PA and ROS production. Data collectively indicate that upon xylanase perception, cells activate a protein kinase pathway required for NO formation and that, S-nitrosylation-dependent mechanisms are involved in downstream signaling leading to PA and ROS.
Collapse
Affiliation(s)
- M Luciana Lanteri
- Instituto de Investigaciones Biológicas (IIB-CONICET-UNMdP), Universidad Nacional de Mar del Plata, CC 1245, 7600 Mar del Plata, Argentina
| | | | | |
Collapse
|
15
|
Higaki T, Kurusu T, Hasezawa S, Kuchitsu K. Dynamic intracellular reorganization of cytoskeletons and the vacuole in defense responses and hypersensitive cell death in plants. JOURNAL OF PLANT RESEARCH 2011; 124:315-24. [PMID: 21409543 DOI: 10.1007/s10265-011-0408-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 01/19/2011] [Indexed: 05/21/2023]
Abstract
Plants have evolved various means for controlled and organized cell destruction, known as programmed cell death (PCD). In plant immune responses against microbial infection, hypersensitive cell death as a form of PCD is a crucial event to prevent the spread of biotrophic pathogens. Recent live cell imaging techniques have revealed dynamic features and significant roles of cytoskeletons and the vacuole during defense responses and the PCD. Actin microfilaments (MFs) focus on the infection sites and function as tracks for the polar transport of antimicrobial materials. To accomplish hypersensitive cell death, further dynamic changes in cytoskeletons are induced. MFs play a role in the structural and functional regulation of the vacuole, leading to execution of the PCD. We here overview spatiotemporal dynamic changes in the cytoskeletons and the vacuoles triggered by signals from pathogens, and propose a hypothetical model for MF-regulated vacuole-mediated PCD in plant immunity.
Collapse
Affiliation(s)
- Takumi Higaki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha, Kashiwa, Chiba, 277-8562, Japan
| | | | | | | |
Collapse
|