1
|
Ahmad A, Wallau GL, Ren Z. Characterization of Mariner transposons in seven species of Rhus gall aphids. Sci Rep 2021; 11:16349. [PMID: 34381125 PMCID: PMC8357937 DOI: 10.1038/s41598-021-95843-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/23/2021] [Indexed: 02/07/2023] Open
Abstract
Transposable elements (TEs), also known as jumping genes, are widely spread in the genomes of insects and play a considerable role in genomic evolution. Mariner/DD34D family belongs to class II transposable elements which is widely spread in the genomes of insects and have considerable role in genomic evolution. Mariner like elements (MLEs) were searched in the genomes of seven species of Rhus gall aphids belonging to six genera. In total, 121 MLEs were detected in the genomes of the seven investigated species of Rhus gall aphids, which showed a wide distribution in both close and distant related species. The sequences of MLEs ranged from 1 to 1.4 kb in length and the structural analysis of the MLEs showed that only five copies were potentially active with intact open reading frame (ORF) and terminal inverted repeats (TIRs). Phylogenetic analysis showed that all the 121 MLE sequences belonged to four subfamilies, i.e., Mauritiana, Drosophila, Vertumana and Irritans, among which Drosophila and Vertumana subfamilies were reported in aphids for the first time. Our present report revealed the diversity and distribution of MLEs in Rhus gall aphid genomes and expanded our understandings on the characterization of transposable elements in aphid genomes, which might be useful as genetic markers and tools and would play an important role in genomic evolution and adaptation of aphids.
Collapse
Affiliation(s)
- Aftab Ahmad
- School of Life Science, Shanxi University, 92 Wucheng Rd, Taiyuan, 030006, Shanxi, China
| | - Gabriel Luz Wallau
- Departamento de Entomologia e Núcleo de Bioinf Ormática, Instituto Aggeu Magalhães (IAM) - Fundação Oswaldo Cruz (FIOCRUZ), Recife, 50740-465, Brazil
| | - Zhumei Ren
- School of Life Science, Shanxi University, 92 Wucheng Rd, Taiyuan, 030006, Shanxi, China.
| |
Collapse
|
2
|
Wang S, Diaby M, Puzakov M, Ullah N, Wang Y, Danley P, Chen C, Wang X, Gao B, Song C. Divergent evolution profiles of DD37D and DD39D families of Tc1/mariner transposons in eukaryotes. Mol Phylogenet Evol 2021; 161:107143. [PMID: 33713798 DOI: 10.1016/j.ympev.2021.107143] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 02/28/2021] [Accepted: 03/04/2021] [Indexed: 11/29/2022]
Abstract
DNA transposons play a significant role in shaping the size and structure of eukaryotic genomes. The Tc1/mariner transposons are the most diverse and widely distributed superfamily of DNA transposons and the structure and distribution of several Tc1/mariner families, such as DD35E/TR, DD36E/IC, DD37E/TRT, and DD41D/VS, have been well studied. Nonetheless, a greater understanding of the structure and diversity of Tc1/mariner transposons will provide insight into the evolutionary history of eukaryotic genomes. Here, we conducted further analysis of DD37D/maT and DD39D (named Guest, GT), which were identified by the specific catalytic domains DD37D and DD39D. Most transposons of the maT family have a total length of approximately 1.3 kb and harbor a single open reading frame encoding a ~ 346 amino acid (range 302-398 aa) transposase protein, flanked by short terminal inverted repeats (TIRs) (13-48 base pairs, bp). In contrast, GTs transposons were longer (2.0-5.8 kb), encoded a transposase protein of ~400 aa (range 140-592 aa), and were flanked by short TIRs (19-41 bp). Several conserved motifs, including two helix-turn-helix (HTH) motifs, a GRPR (GRKR) motif, a nuclear localization sequence, and a DDD domain, were also identified in maT and GT transposases. Phylogenetic analyses of the DDD domain showed that the maT and GT families each belong to a monophyletic clade and appear to be closely related to DD41D/VS and DD34D/mariner. In addition, maTs are mainly distributed in invertebrates (144 species), whereas GTs are mainly distributed in land plants through a small number of GTs are present in Chromista and animals. Sequence identity and phylogenetic analysis revealed that horizontal transfer (HT) events of maT and GT might occur between kingdoms and phyla of eukaryotes; however, pairwise distance comparisons between host genes and transposons indicated that HT events involving maTs might be less frequent between invertebrate species and HT events involving GTs may be less frequent between land plant species. Overall, the DD37D/maT and DD39D/GT families display significantly different distribution and tend to be identified in more ancient evolutionary families. The discovery of intact transposases, perfect TIRs, and target site duplications (TSD) of maTs and GTs illustrates that the DD37D/maT and DD39D/GT families may be active. Together, these findings improve our understanding of the diversity of Tc1/mariner transposons and their impact on eukaryotic genome evolution.
Collapse
Affiliation(s)
- Saisai Wang
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Mohamed Diaby
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Mikhail Puzakov
- A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Nakhimov av., 2, Sevastopol 299011, Russia
| | - Numan Ullah
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yali Wang
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Patrick Danley
- University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Cai Chen
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xiaoyan Wang
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Bo Gao
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Chengyi Song
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
3
|
Ramakrishnan M, Yrjälä K, Satheesh V, Zhou MB. Bamboo Transposon Research: Current Status and Perspectives. Methods Mol Biol 2021; 2250:257-270. [PMID: 33900611 DOI: 10.1007/978-1-0716-1134-0_24] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Bamboo, a fast-growing non-timber forest plant with many uses, is a valuable species for green development. However, bamboo flowering is very infrequent, extending, in general, for up to 120 years. Ecologically, bamboo species are generally better adapted to various environments than other grasses. Therefore, the species deserves a special status in what could be called Ecological Bioeconomy. An understanding of the genetic processes of bamboo can help us sustainably develop and manage bamboo forests. Transposable elements (TEs), jumping genes or transposons, are major genetic elements in plant genomes. The rapid development of the bamboo reference genome, at the chromosome level, reveals that TEs occupy over 63.24% of the genome. This is higher than found in rice, Brachypodium, and sorghum. The bamboo genome contains diverse families of TEs, which play a significant role in bamboo's biological processes including growth and development. TEs provide important clues for understanding the evolution of the bamboo genome. In this chapter, we briefly describe the current status of research on TEs in the bamboo genome, their regulation, and transposition mechanisms. Perspectives for future research are also provided.
Collapse
Affiliation(s)
- Muthusamy Ramakrishnan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Kim Yrjälä
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China.,Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| | - Viswanathan Satheesh
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Ming-Bing Zhou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China. .,Zhejiang Provincial Collaborative Innovation Centre for Bamboo Resources and High-Efficiency Utilization, Zhejiang A&F University, Hangzhou, Zhejiang, China.
| |
Collapse
|
4
|
Ramakrishnan M, Yrjälä K, Vinod KK, Sharma A, Cho J, Satheesh V, Zhou M. Genetics and genomics of moso bamboo (Phyllostachys edulis): Current status, future challenges, and biotechnological opportunities toward a sustainable bamboo industry. Food Energy Secur 2020. [DOI: 10.1002/fes3.229] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
| | - Kim Yrjälä
- State Key Laboratory of Subtropical Silviculture Zhejiang A&F University Hangzhou China
- Department of Forest Sciences University of Helsinki Helsinki Finland
| | | | - Anket Sharma
- State Key Laboratory of Subtropical Silviculture Zhejiang A&F University Hangzhou China
| | - Jungnam Cho
- National Key Laboratory of Plant Molecular Genetics CAS Center for Excellence in Molecular Plant Sciences Shanghai Institute of Plant Physiology and Ecology Chinese Academy of Sciences Shanghai China
- CAS‐JIC Centre of Excellence for Plant and Microbial Science (CEPAMS) Chinese Academy of Sciences Shanghai China
| | - Viswanathan Satheesh
- National Key Laboratory of Plant Molecular Genetics CAS Center for Excellence in Molecular Plant Sciences Shanghai Institute of Plant Physiology and Ecology Chinese Academy of Sciences Shanghai China
- Shanghai Center for Plant Stress Biology CAS Center for Excellence in Molecular Plant Sciences Chinese Academy of Sciences Shanghai China
| | - Mingbing Zhou
- State Key Laboratory of Subtropical Silviculture Zhejiang A&F University Hangzhou China
- Zhejiang Provincial Collaborative Innovation Centre for Bamboo Resources and High‐efficiency Utilization Zhejiang A&F University Hangzhou China
| |
Collapse
|
5
|
Ramakrishnan M, Zhou M, Pan C, Hänninen H, Yrjälä K, Vinod KK, Tang D. Affinities of Terminal Inverted Repeats to DNA Binding Domain of Transposase Affect the Transposition Activity of Bamboo Ppmar2 Mariner-Like Element. Int J Mol Sci 2019; 20:ijms20153692. [PMID: 31357686 PMCID: PMC6696609 DOI: 10.3390/ijms20153692] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 07/19/2019] [Accepted: 07/24/2019] [Indexed: 11/16/2022] Open
Abstract
Mariner-like elements (MLE) are a super-family of DNA transposons widespread in animal and plant genomes. Based on their transposition characteristics, such as random insertions and high-frequency heterogeneous transpositions, several MLEs have been developed to be used as tools in gene tagging and gene therapy. Two active MLEs, Ppmar1 and Ppmar2, have previously been identified in moso bamboo (Phyllostachys edulis). Both of these have a preferential insertion affinity to AT-rich region and their insertion sites are close to random in the host genome. In Ppmar2 element, we studied the affinities of terminal inverted repeats (TIRs) to DNA binding domain (DBD) and their influence on the transposition activity. We could identify two putative boxes in the TIRs which play a significant role in defining the TIR's affinities to the DBD. Seven mutated TIRs were constructed, differing in affinities based on similarities with those of other plant MLEs. Gel mobility shift assays showed that the TIR mutants with mutation sites G669A-C671A had significantly higher affinities than the mutants with mutation sites C657T-A660T. The high-affinity TIRs indicated that their transposition frequency was 1.5-2.0 times higher than that of the wild type TIRs in yeast transposition assays. The MLE mutants with low-affinity TIRs had relatively lower transposition frequency from that of wild types. We conclude that TIR affinity to DBD significantly affects the transposition activity of Ppmar2. The mutant MLEs highly active TIRs constructed in this study can be used as a tool for bamboo genetic studies.
Collapse
Affiliation(s)
- Muthusamy Ramakrishnan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, China
| | - Mingbing Zhou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, China.
- Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-Efficiency Utilization, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, China.
| | - Chunfang Pan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, China
| | - Heikki Hänninen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, China
| | - Kim Yrjälä
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, China
- Department of Forest Sciences, University of Helsinki, 00014 Helsinki, Finland
| | - Kunnummal Kurungara Vinod
- Division of Genetics, ICAR-Indian Agricultural Research Institute, Rice Breeding and Genetics Research Centre, Aduthurai, Tamil Nadu 612101, India
| | - Dingqin Tang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, China
| |
Collapse
|
6
|
Kharrat I, Mezghani M, Casse N, Denis F, Caruso A, Makni H, Capy P, Rouault JD, Chénais B, Makni M. Characterization of mariner-like transposons of the mauritiana Subfamily in seven tree aphid species. Genetica 2015; 143:63-72. [PMID: 25555688 DOI: 10.1007/s10709-014-9814-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 12/26/2014] [Indexed: 11/26/2022]
Abstract
Mariner-like elements (MLEs) are Class II transposons present in all eukaryotic genomes in which MLEs have been searched for. This article reports the detection of MLEs in seven of the main fruit tree aphid species out of eight species studied. Deleted MLE sequences of 916-919 bp were characterized, using the terminal-inverted repeats (TIRs) of mariner elements belonging to the mauritiana Subfamily as primers. All the sequences detected were deleted copies of full-length elements that included the 3'- and 5'-TIRs but displayed internal deletions affecting Mos1 activity. Networks based on the mtDNA cytochrome oxidase subunit-I (CO-I) and MLE sequences were incongruent, suggesting that mutations in transposon sequences had accumulated before speciation of tree aphid species occurred, and that they have been maintained in this species via vertical transmissions. This is the first evidence of the widespread occurrence of MLEs in aphids.
Collapse
Affiliation(s)
- Imen Kharrat
- Faculté des Sciences de Tunis, Université de Tunis El Manar, UR11ES10 Génomique des insectes ravageurs, 2092, Manar II, Tunisia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
First evidence of mariner-like transposons in the genome of the marine microalga Amphora acutiuscula (Bacillariophyta). Protist 2014; 165:730-44. [PMID: 25250954 DOI: 10.1016/j.protis.2014.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 08/11/2014] [Accepted: 08/18/2014] [Indexed: 12/17/2022]
Abstract
Mariner-like elements (MLEs) are transposable elements able to move in the host genomes by a "cut and paste" mechanism. They have been found in numerous organisms. We succeeded in amplifying complete and truncated MLEs in the marine diatom Amphora acutiuscula. Full-length MLEs of 2,100bp delimited by imperfect Terminal Inverted Repeats revealed an intact Open Reading Frame, suggesting that the MLEs could be active. The DNA binding domain of the corresponding putative transposase could have two Helix-Turn-Helix and a Nuclear Location Site motifs, and its catalytic domain includes a particular triad of aspartic acids DD43D not previously reported. The number of copies was estimated to be 38, including approximately 20 full-length elements. Phylogenetic analysis shows that these peculiar MLEs differ from plant and other stramenopile MLEs and that they could constitute a new sub-family of Tc1-mariner elements.
Collapse
|
8
|
Yamada K, Kawanishi Y, Yamada A, Tokuda G, Gurung RD, Sasaki T, Nakajima Y, Maekawa H. A novel cluster of mariner-like elements belonging to mellifera subfamily from spiders and insects: implications of recent horizontal transfer on the South-West Islands of Japan. Genetica 2014; 142:149-60. [PMID: 24723149 DOI: 10.1007/s10709-014-9762-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 03/22/2014] [Indexed: 10/25/2022]
Abstract
Mariner-like elements (MLEs) have been isolated from various eukaryotic genomes and they are divided into 15 subfamilies, including main five subfamilies: mauritiana, cecropia, mellifera/capitata, irritans, and elegans/briggsae. In the present study, MLEs belonging to mellifera subfamily were isolated from various spiders and insects (Hymenoptera and Lepidoptera) inhabiting the South-West Islands of Japan and neighboring regions. MLEs isolated from 15 different species formed a distinct novel cluster in mellifera subfamily. MLEs obtained from three different species [i.e., the bee Amegilla senahai subflavescens (Amsmar1), the wasp Campsomeris sp. (Casmar1), and the swallowtail butterfly Pachliopta aristolochiae (Paamar1)] contained an intact open reading frame that encoded a putative transposase. These transposases exhibited high similarity of 97.9% among themselves. In case of Casmar1, the presence of an intact ORF was found in high frequencies (i.e., 11 out of 12 clones). In addition, these transposases also showed the presence of a terminal inverted repeat-binding motif, DD(34)D and two highly conserved amino acid motifs, (W/L)(I/L)PHQL and YSP(D/N)L(A/S)P. These two motifs differed from previously known motifs, WVPHEL and YSPDLAP. MLEs isolated from these three different species may have been inserted into their genomes by horizontal transfer. Furthermore, the presence of an intact ORF suggests that they are still active in habitats along these isolated islands.
Collapse
Affiliation(s)
- Kaori Yamada
- Graduate School of Science and Engineering, University of the Ryukyus, Nishihara, 903-0213, Japan
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Lorite P, Maside X, Sanllorente O, Torres MI, Periquet G, Palomeque T. The ant genomes have been invaded by several types of mariner transposable elements. Naturwissenschaften 2012; 99:1007-20. [PMID: 23097152 DOI: 10.1007/s00114-012-0982-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 10/10/2012] [Accepted: 10/11/2012] [Indexed: 11/25/2022]
Abstract
To date, only three types of full-length mariner elements have been described in ants, each one in a different genus of the Myrmicinae subfamily: Sinvmar was isolated from various Solenopsis species, Myrmar from Myrmica ruginodis, and Mboumar from Messor bouvieri. In this study, we report the coexistence of three mariner elements (Tnigmar-Si, Tnigmar-Mr, and Tnigmar-Mb) in the genome of a single species, Tapinoma nigerrimum (subfamily Dolichoderinae). Molecular evolutionary analyses of the nucleotide sequence data revealed a general agreement between the evolutionary history of most the elements and the ant species that harbour them, and suggest that they are at the vertical inactivation stage of the so-called Mariner Life Cycle. In contrast, significantly reduced levels of synonymous divergence between Mboumar and Tnigmar-Mb and between Myrmar and Botmar (a mariner element isolated from Bombus terrestris), relative to those observed between their hosts, suggest that these elements arrived to the species that host them by horizontal transfer, long after the species' split. The horizontal transfer events for the two pairs of elements could be roughly dated within the last 2 million years and about 14 million years, respectively. As would be expected under this scenario, the coding sequences of the youngest elements, Tnigmar-Mb and Mboumar, are intact and, thus, potentially functional. Each mariner element has a different chromosomal distribution pattern according to their stage within the Mariner Life Cycle. Finally, a new defective transposable element (Azteca) has also been found inserted into the Tnigmar-Mr sequences showing that the ant genomes have been invaded by at least four different types of mariner elements.
Collapse
Affiliation(s)
- Pedro Lorite
- Departamento de Biología Experimental, Área de Genética, Universidad de Jaén, 23071, Jaén, Spain
| | | | | | | | | | | |
Collapse
|