1
|
Delfini C, Aliscioni SS, Acosta JM, Pensiero JF, Zuloaga FO. An Update of the Cenchrinae (Poaceae, Panicoideae, Paniceae) and a New Genus for the Subtribe to Clarify the Dubious Position of a Species of Panicum L. PLANTS (BASEL, SWITZERLAND) 2023; 12:749. [PMID: 36840098 PMCID: PMC9966601 DOI: 10.3390/plants12040749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/21/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
Subtribe Cenchrinae, so-called as the "bristle clade", is a monophyletic group of panicoid grasses characterized by having sterile branches or bristles on the inflorescences in most of its species. Within this subtribe is also placed Panicum antidotale Retz., an "incertae sedis" species of Panicum L. which lacks bristles along the inflorescence. In this study, we present an update of the subtribe Cenchrinae based on molecular, morphological, and anatomical evidence to clarify the systematic position of P. antidotale in the Cenchrinae, excluding it from Panicum and establishing it in a new genus (i.e., Janochloa Zuloaga & Delfini); the morphological features distinguishing the new genus from other closely related taxa are properly discussed and an identification key to the 24 genera recognized within Cenchrinae is presented. We also add American Setaria species, not tested before, of subgenera Paurochaetium and Reverchoniae, discussing the position of these taxa in actual phylogeny of the genus as well as defining placements in the tree of Setaria species that were imprecisely located in previous analyses. A comparison with the results from other studies, comments on Stenotaphrum Trin. and a brief discussion on conflicting placements in Cenchrus and related taxa, and of Acritochaete Pilg. are also included.
Collapse
Affiliation(s)
- Carolina Delfini
- Instituto de Botánica Darwinion (ANCEFN–CONICET), Labardén 200, Casilla de Correo 22, San Isidro B1642HYD, Buenos Aires, Argentina
| | - Sandra S. Aliscioni
- Instituto de Botánica Darwinion (ANCEFN–CONICET), Labardén 200, Casilla de Correo 22, San Isidro B1642HYD, Buenos Aires, Argentina
- Cátedra de Botánica General, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, Buenos Aires C1417DSE, Argentina
| | - Juan M. Acosta
- Instituto de Botánica Darwinion (ANCEFN–CONICET), Labardén 200, Casilla de Correo 22, San Isidro B1642HYD, Buenos Aires, Argentina
| | - José F. Pensiero
- Instituto de Ciencias Agropecuarias del Litoral, UNL–CONICET–FCA, Kreder 2805, Esperanza 3080HOF, Santa Fe, Argentina
| | - Fernando O. Zuloaga
- Instituto de Botánica Darwinion (ANCEFN–CONICET), Labardén 200, Casilla de Correo 22, San Isidro B1642HYD, Buenos Aires, Argentina
| |
Collapse
|
2
|
Testing the Influence of Incomplete DNA Barcode Libraries on Ecological Status Assessment of Mediterranean Transitional Waters. BIOLOGY 2021; 10:biology10111092. [PMID: 34827084 PMCID: PMC8614736 DOI: 10.3390/biology10111092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/14/2021] [Accepted: 10/20/2021] [Indexed: 12/03/2022]
Abstract
Simple Summary The biodiversity and ecological status assessment of transitional water ecosystems by benthic macroinvertebrates investigation could use DNA barcode tools for more rapid and efficient outputs. The principal limits of this application are the incompleteness of DNA barcode databases, the identification of optimal primers set, and the gap in the species sequences. The influence of the incompleteness of DNA barcode libraries on species diversity indices, ecological indicators, and ecological status assessment in transitional waters of the southeast Mediterranean were analysed, underlying the importance to implement DNA barcode libraries and to put an effort toward specific species at a local level. Abstract The ecological assessment of European aquatic ecosystems is regulated under the framework directives on strategy for water and marine environments. Benthic macroinvertebrates are the most used biological quality element for ecological assessment of rivers, coastal-marines, and transitional waters. The morphological identification of benthic macroinvertebrates is the current tool for their assessment. Recently, DNA-based tools have been proposed as effective alternatives. The main current limits of DNA-based applications include the incompleteness of species recorded in the DNA barcode reference libraries and the primers bias. Here, we analysed the influence of the incompleteness of DNA barcode databases on species diversity indices, ecological indicators, and ecological assessment in transitional waters of the southeast Mediterranean, taking into account the availability of commonly sequenced and deposited genomic regions for listed species. The ecological quality status assigned through the potential application of both approaches to the analysed transitional water ecosystems was different in 27% of sites. We also analysed the inter-specific genetic distances to evaluate the potential application of the DNA metabarcoding method. Overall, this work highlights the importance to expand the barcode databases and to analyse, at the regional level, the gaps in the DNA barcodes.
Collapse
|
3
|
Bhatt P, Thaker V. A comparative study on 193 plastomes of Poaceae for validity and implications of individual barcode genes and concatenated protein coding sequences with selected plastomes of grasses from the desert of India. Meta Gene 2021. [DOI: 10.1016/j.mgene.2021.100921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
4
|
Chen Y, Zhu X, Loukopoulos P, Weston LA, Albrecht DE, Quinn JC. Genotypic identification of Panicum spp. in New South Wales, Australia using DNA barcoding. Sci Rep 2021; 11:16055. [PMID: 34362980 PMCID: PMC8346583 DOI: 10.1038/s41598-021-95610-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 07/16/2021] [Indexed: 02/07/2023] Open
Abstract
Australia has over 30 Panicum spp. (panic grass) including several non-native species that cause crop and pasture loss and hepatogenous photosensitisation in livestock. It is critical to correctly identify them at the species level to facilitate the development of appropriate management strategies for efficacious control of Panicum grasses in crops, fallows and pastures. Currently, identification of Panicum spp. relies on morphological examination of the reproductive structures, but this approach is only useful for flowering specimens and requires significant taxonomic expertise. To overcome this limitation, we used multi-locus DNA barcoding for the identification of ten selected Panicum spp. found in Australia. With the exception of P. buncei, other native Australian Panicum were genetically separated at the species level and distinguished from non-native species. One nuclear (ITS) and two chloroplast regions (matK and trnL intron-trnF) were identified with varying facility for DNA barcode separation of the Panicum species. Concatenation of sequences from ITS, matK and trnL intron-trnF regions provided clear separation of eight regionally collected species, with a maximum intraspecific distance of 0.22% and minimum interspecific distance of 0.33%. Two of three non-native Panicum species exhibited a smaller genome size compared to native species evaluated, and we speculate that this may be associated with biological advantages impacting invasion of non-native Panicum species in novel locations. We conclude that multi-locus DNA barcoding, in combination with traditional taxonomic identification, provides an accurate and cost-effective adjunctive tool for further distinguishing Panicum spp. at the species level.
Collapse
Affiliation(s)
- Yuchi Chen
- grid.1037.50000 0004 0368 0777School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW Australia ,grid.1680.f0000 0004 0559 5189Graham Centre for Agricultural Innovation, Charles Sturt University and NSW Department of Primary Industries, Wagga Wagga, NSW Australia ,grid.1008.90000 0001 2179 088XMelbourne Veterinary School, The University of Melbourne, Werribee, VIC Australia
| | - Xiaocheng Zhu
- grid.1680.f0000 0004 0559 5189Graham Centre for Agricultural Innovation, Charles Sturt University and NSW Department of Primary Industries, Wagga Wagga, NSW Australia ,grid.1680.f0000 0004 0559 5189Wagga Wagga Agricultural Institute, NSW Department of Primary Industries, Wagga Wagga, NSW Australia
| | - Panayiotis Loukopoulos
- grid.1037.50000 0004 0368 0777School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW Australia ,grid.1008.90000 0001 2179 088XMelbourne Veterinary School, The University of Melbourne, Werribee, VIC Australia
| | - Leslie A. Weston
- grid.1037.50000 0004 0368 0777School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW Australia ,grid.1680.f0000 0004 0559 5189Graham Centre for Agricultural Innovation, Charles Sturt University and NSW Department of Primary Industries, Wagga Wagga, NSW Australia
| | - David E. Albrecht
- grid.467784.e0000 0001 2231 5722Australian National Herbarium, Centre for Australian National Biodiversity Research (a Joint Venture Between Parks Australia and CSIRO), Canberra, Australian Capital Territory, Australia
| | - Jane C. Quinn
- grid.1037.50000 0004 0368 0777School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW Australia ,grid.1680.f0000 0004 0559 5189Graham Centre for Agricultural Innovation, Charles Sturt University and NSW Department of Primary Industries, Wagga Wagga, NSW Australia
| |
Collapse
|
5
|
Zheng G, Wei L, Ma L, Wu Z, Gu C, Chen K. Comparative analyses of chloroplast genomes from 13 Lagerstroemia (Lythraceae) species: identification of highly divergent regions and inference of phylogenetic relationships. PLANT MOLECULAR BIOLOGY 2020; 102:659-676. [PMID: 31997112 DOI: 10.1007/s11103-020-00972-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 01/20/2020] [Indexed: 05/11/2023]
Abstract
Seven divergence hotspots as plastid markers for DNA barcoding was selected, and the phylogeny of 13 Lagerstroemia species based on the cp genome data was reconstructed within Myrtales. The Lagerstroemia species used in this study originated in China and have high economic and ecological value. The shared interspecific morphological characteristics and intraspecific morphological variation resulting from hybridization among Lagerstroemia taxa have made resolving their classification problems and phylogenetic relationships difficult. Systematic comparative genomic analysis has been shown to resolve phylogenetic relationships. We sequenced and annotated 6 Lagerstroemia cp genomes (Lagerstroemia excelsa, Lagerstroemia limii, Lagerstroemia siamica, Lagerstroemia tomentosa, Lagerstroemia venusta, and Lagerstroemia calyculata) for the first time and combined them with previously published genomes for Lagerstroemia species. Bioinformatics was used to analyse the 13 cp genomes in terms of gene structure and organization, codon usage, contraction and expansion of inverted repeat regions, repeat structure, divergence hotspots, species pairwise Ka/Ks ratios and phylogenetic relationships. The length varied between 152,049 bp in Lagerstroemia subcostata and 152,521 bp in L. venusta. We selected seven divergence hotspots in the cp genomes that had the potential to act as plastid markers to distinguish Lagerstroemia species. The phylogenetic relationships within Myrtales inferred from the cp genomes of 13 Lagerstroemia species and 27 other Myrtales species were highly supported, which illustrated several novel relationships within Myrtales. Taken together, our results provide comprehensive chloroplast genomic resources, which can be used further for species identification and molecular breeding of Lagerstroemia species.
Collapse
Affiliation(s)
- Gang Zheng
- School of Landscape and Architecture, Zhejiang A & F University, Hangzhou, 311300, China
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang A & F University, Hangzhou, 311300, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang A & F University, Hangzhou, 311300, China
| | - Lingling Wei
- School of Landscape and Architecture, Zhejiang A & F University, Hangzhou, 311300, China
- School of Humanities and social sciences, Beijing Forestry University, Beijing, 100083, China
| | - Li Ma
- School of Landscape and Architecture, Zhejiang A & F University, Hangzhou, 311300, China
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang A & F University, Hangzhou, 311300, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang A & F University, Hangzhou, 311300, China
| | - Zhiqiang Wu
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Cuihua Gu
- School of Landscape and Architecture, Zhejiang A & F University, Hangzhou, 311300, China.
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang A & F University, Hangzhou, 311300, China.
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang A & F University, Hangzhou, 311300, China.
| | - Kai Chen
- School of Landscape and Architecture, Zhejiang A & F University, Hangzhou, 311300, China
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang A & F University, Hangzhou, 311300, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang A & F University, Hangzhou, 311300, China
| |
Collapse
|
6
|
Zuloaga FO, Salariato DL, Scataglini A. Molecular phylogeny of Panicum s. str. (Poaceae, Panicoideae, Paniceae) and insights into its biogeography and evolution. PLoS One 2018; 13:e0191529. [PMID: 29466405 PMCID: PMC5842878 DOI: 10.1371/journal.pone.0191529] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 01/05/2018] [Indexed: 11/18/2022] Open
Abstract
Panicum sensu stricto is a genus of grasses (Poaceae) with nearly, according to this study, 163 species distributed worldwide. This genus is included in the subtribe Panicinae together with Louisiella, the latter with 2 species. Panicum and subtribe Panicinae are characterized by including annual or perennial taxa with open and lax panicles, and spikelets with the lower glume reduced; all taxa also share a basic chromosome number of x = 9 and a Kranz leaf blade anatomy typical of the NAD-me subtype photosynthetic pathway. Nevertheless, the phylogenetic placements of many Panicum species, and the circumscription of the genus, remained untested. Therefore, phylogenetic analyses were conducted using sequence data from the ndhF plastid region, in an extensive worldwide sampling of Panicum and related genera, in order to infer evolutionary relationships and to provide a phylogenetic framework to review the classification of the genus. Diversification times, historical biogeography and evolutionary patterns of the life history (annual vs. perennial) in the subtribe and Panicum were also studied. Results obtained provide strong support for a monophyletic Panicum including 71 species and 7 sections, of which sections Arthragrostis and Yakirra are new in the genus; 7 new combinations are made here. Furthermore, 32 species traditionally assigned to Panicum were excluded from the genus, and discussed in other subtribes of Paniceae. Our study suggested that early diversification in subtribe Panicinae and Panicum occurred through the Early-Mid Miocene in the Neotropics, while the subsequent diversification of its sections mainly occurred in the Late Miocene-Pleistocene, involving multiple dispersals to all continents. Our analyses also showed that transition rates and changes between annual and perennial life history in Panicum were quite frequent, suggesting considerable lability of this trait. Changes of the life history, together with C4 photosynthesis, and the multiple dispersal events since the Mid Miocene, seem to have facilitated a widespread distribution of the genus. All these findings contribute to a better understanding of the systematics and evolution of Panicum.
Collapse
Affiliation(s)
| | | | - Amalia Scataglini
- Instituto de Botánica Darwinion, San Isidro, Buenos Aires, Argentina
| |
Collapse
|
7
|
|