1
|
Zou LH, Zhu B, Chen Y, Lu Y, Ramkrishnan M, Xu C, Zhou X, Ding Y, Cho J, Zhou M. Genetic and epigenetic reprogramming in response to internal and external cues by induced transposon mobilization in Moso bamboo. THE NEW PHYTOLOGIST 2024; 244:1916-1930. [PMID: 39238152 DOI: 10.1111/nph.20107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 08/21/2024] [Indexed: 09/07/2024]
Abstract
Long terminal repeat retroelements (LTR-REs) have profound effects on DNA methylation and gene regulation. Despite the vast abundance of LTR-REs in the genome of Moso bamboo (Phyllostachys edulis), an industrial crop in underdeveloped countries, their precise implication of the LTR-RE mobility in stress response and development remains unknown. We investigated the RNA and DNA products of LTR-REs in Moso bamboo under various developmental stages and stressful conditions. Surprisingly, our analyses identified thousands of active LTR-REs, particularly those located near genes involved in stress response and developmental regulation. These genes adjacent to active LTR-REs exhibited an increased expression under stress and are associated with reduced DNA methylation that is likely affected by the induced LTR-REs. Moreover, the analyses of simultaneous mapping of insertions and DNA methylation showed that the LTR-REs effectively alter the epigenetic status of the genomic regions where they inserted, and concomitantly their transcriptional competence which might impact the stress resilience and growth of the host. Our work unveils the unusually strong LTR-RE mobility in Moso bamboo and its close association with (epi)genetic changes, which supports the co-evolution of the parasitic DNAs and host genome in attaining stress tolerance and developmental robustness.
Collapse
Affiliation(s)
- Long-Hai Zou
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Bailiang Zhu
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Yaxin Chen
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Yaping Lu
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Muthusamy Ramkrishnan
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Chao Xu
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Xiaohong Zhou
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Yiqian Ding
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Jungnam Cho
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK
| | - Mingbing Zhou
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| |
Collapse
|
2
|
Tang Y, Li X, Hu C, Qiu X, Li J, Li X, Zhu H, Wang J, Sui J, Qiao L. Identification and characterization of transposable element AhMITE1 in the genomes of cultivated and two wild peanuts. BMC Genomics 2022; 23:500. [PMID: 35820800 PMCID: PMC9277781 DOI: 10.1186/s12864-022-08732-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/30/2022] [Indexed: 12/04/2022] Open
Abstract
Background The cultivated peanut (Arachis hypogaea L., AABB) is an allotetraploid hybrid between two diploid peanuts, A. duranensis (AA genome) and A. ipaensis (BB genome). Miniature inverted-repeat transposable elements (MITEs), some of which are known as active nonautonomous DNA transposons with high copy numbers, play important roles in genome evolution and diversification. AhMITE1, a member of the MITE family of transposons, but information on the peanut genomes is still limited. Here, we analyzed AhMITE1, AuMITE1 and ApMITE1 in the cultivated (A. hypogaea) and two wild peanut (A. duranensis and A. ipaensis) genomes. Results The cultivated and the two wild peanut genomes harbored 142, 14 and 21 AhMITE1, AuMITE1 and ApMITE1 family members, respectively. These three family members exhibited highly conserved TIR sequences, and insertions preferentially occurred within 2 kb upstream and downstream of gene-coding and AT-rich regions. Phylogenetic and pairwise nucleotide diversity analysis showed that AhMITE1 and ApMITE1 family members have undergone one round of amplification bursts during the evolution of the peanut genome. PCR analyses were performed in 23 peanut varieties and demonstrated that AhMITE1 is an active transposon and that hybridization or chemical mutagenesis can promote the mobilization of AhMITE1. Conclusions AhMITE1, AuMITE1 and ApMITE1 family members were identified based on local BLAST search with MAK between the cultivated and the two wild peanut genomes. The phylogenetic, nucleotide diversity and variation copy numbers of AhMITE1, AuMITE1 and ApMITE1 members provides opportunities for investigating their roles during peanut evolution. These findings will contribute to knowledge on diversity of AhMITE1, provide information about the potential impact on the gene expression and promote the development of DNA markers in peanut. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08732-0.
Collapse
Affiliation(s)
- Yanyan Tang
- College of Agronomy, Dry-Land Farming Technology Laboratory of Shandong Province, Key Laboratory of Qingdao Major Crop Germplasm Resource Innovation and Application, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiaoting Li
- College of Agronomy, Dry-Land Farming Technology Laboratory of Shandong Province, Key Laboratory of Qingdao Major Crop Germplasm Resource Innovation and Application, Qingdao Agricultural University, Qingdao, 266109, China
| | - Changli Hu
- College of Agronomy, Dry-Land Farming Technology Laboratory of Shandong Province, Key Laboratory of Qingdao Major Crop Germplasm Resource Innovation and Application, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiaochen Qiu
- College of Agronomy, Dry-Land Farming Technology Laboratory of Shandong Province, Key Laboratory of Qingdao Major Crop Germplasm Resource Innovation and Application, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jingjing Li
- College of Agronomy, Dry-Land Farming Technology Laboratory of Shandong Province, Key Laboratory of Qingdao Major Crop Germplasm Resource Innovation and Application, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xin Li
- College of Agronomy, Dry-Land Farming Technology Laboratory of Shandong Province, Key Laboratory of Qingdao Major Crop Germplasm Resource Innovation and Application, Qingdao Agricultural University, Qingdao, 266109, China
| | - Hong Zhu
- College of Agronomy, Dry-Land Farming Technology Laboratory of Shandong Province, Key Laboratory of Qingdao Major Crop Germplasm Resource Innovation and Application, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jingshan Wang
- College of Agronomy, Dry-Land Farming Technology Laboratory of Shandong Province, Key Laboratory of Qingdao Major Crop Germplasm Resource Innovation and Application, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jiongming Sui
- College of Agronomy, Dry-Land Farming Technology Laboratory of Shandong Province, Key Laboratory of Qingdao Major Crop Germplasm Resource Innovation and Application, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Lixian Qiao
- College of Agronomy, Dry-Land Farming Technology Laboratory of Shandong Province, Key Laboratory of Qingdao Major Crop Germplasm Resource Innovation and Application, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
3
|
Papolu PK, Ramakrishnan M, Wei Q, Vinod KK, Zou LH, Yrjala K, Kalendar R, Zhou M. Long terminal repeats (LTR) and transcription factors regulate PHRE1 and PHRE2 activity in Moso bamboo under heat stress. BMC PLANT BIOLOGY 2021; 21:585. [PMID: 34886797 PMCID: PMC8656106 DOI: 10.1186/s12870-021-03339-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/12/2021] [Indexed: 05/28/2023]
Abstract
BACKGROUND LTR retrotransposons play a significant role in plant growth, genome evolution, and environmental stress response, but their regulatory response to heat stress remains unclear. We have investigated the activities of two LTR retrotransposons, PHRE1 and PHRE2, of moso bamboo (Phyllostachys edulis) in response to heat stress. RESULTS The differential overexpression of PHRE1 and PHRE2 with or without CaMV35s promoter showed enhanced expression under heat stress in transgenic plants. The transcriptional activity studies showed an increase in transposition activity and copy number among moso bamboo wild type and Arabidopsis transgenic plants under heat stress. Comparison of promoter activity in transgenic plants indicated that 5'LTR promoter activity was higher than CaMV35s promoter. Additionally, yeast one-hybrid (Y1H) system and in planta biomolecular fluorescence complementation (BiFC) assay revealed interactions of heat-dependent transcription factors (TFs) with 5'LTR sequence and direct interactions of TFs with pol and gag. CONCLUSIONS Our results conclude that the 5'LTR acts as a promoter and could regulate the LTR retrotransposons in moso bamboo under heat stress.
Collapse
Affiliation(s)
- Pradeep K Papolu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
| | - Muthusamy Ramakrishnan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
- Bamboo Research Institute, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Qiang Wei
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
- Bamboo Research Institute, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | | | - Long-Hai Zou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
| | - Kim Yrjala
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
| | - Ruslan Kalendar
- Helsinki Institute of Life Science HiLIFE, Biocenter 3, Viikinkaari 1, FI-00014 University of Helsinki, Helsinki, Finland
| | - Mingbing Zhou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China.
- Zhejiang Provincial Collaborative Innovation Centre for Bamboo Resources and High-efficiency Utilization, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China.
| |
Collapse
|
4
|
Ramakrishnan M, Yrjälä K, Satheesh V, Zhou MB. Bamboo Transposon Research: Current Status and Perspectives. Methods Mol Biol 2021; 2250:257-270. [PMID: 33900611 DOI: 10.1007/978-1-0716-1134-0_24] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Bamboo, a fast-growing non-timber forest plant with many uses, is a valuable species for green development. However, bamboo flowering is very infrequent, extending, in general, for up to 120 years. Ecologically, bamboo species are generally better adapted to various environments than other grasses. Therefore, the species deserves a special status in what could be called Ecological Bioeconomy. An understanding of the genetic processes of bamboo can help us sustainably develop and manage bamboo forests. Transposable elements (TEs), jumping genes or transposons, are major genetic elements in plant genomes. The rapid development of the bamboo reference genome, at the chromosome level, reveals that TEs occupy over 63.24% of the genome. This is higher than found in rice, Brachypodium, and sorghum. The bamboo genome contains diverse families of TEs, which play a significant role in bamboo's biological processes including growth and development. TEs provide important clues for understanding the evolution of the bamboo genome. In this chapter, we briefly describe the current status of research on TEs in the bamboo genome, their regulation, and transposition mechanisms. Perspectives for future research are also provided.
Collapse
Affiliation(s)
- Muthusamy Ramakrishnan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Kim Yrjälä
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China.,Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| | - Viswanathan Satheesh
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Ming-Bing Zhou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China. .,Zhejiang Provincial Collaborative Innovation Centre for Bamboo Resources and High-Efficiency Utilization, Zhejiang A&F University, Hangzhou, Zhejiang, China.
| |
Collapse
|
5
|
Ramakrishnan M, Yrjälä K, Vinod KK, Sharma A, Cho J, Satheesh V, Zhou M. Genetics and genomics of moso bamboo (Phyllostachys edulis): Current status, future challenges, and biotechnological opportunities toward a sustainable bamboo industry. Food Energy Secur 2020. [DOI: 10.1002/fes3.229] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
| | - Kim Yrjälä
- State Key Laboratory of Subtropical Silviculture Zhejiang A&F University Hangzhou China
- Department of Forest Sciences University of Helsinki Helsinki Finland
| | | | - Anket Sharma
- State Key Laboratory of Subtropical Silviculture Zhejiang A&F University Hangzhou China
| | - Jungnam Cho
- National Key Laboratory of Plant Molecular Genetics CAS Center for Excellence in Molecular Plant Sciences Shanghai Institute of Plant Physiology and Ecology Chinese Academy of Sciences Shanghai China
- CAS‐JIC Centre of Excellence for Plant and Microbial Science (CEPAMS) Chinese Academy of Sciences Shanghai China
| | - Viswanathan Satheesh
- National Key Laboratory of Plant Molecular Genetics CAS Center for Excellence in Molecular Plant Sciences Shanghai Institute of Plant Physiology and Ecology Chinese Academy of Sciences Shanghai China
- Shanghai Center for Plant Stress Biology CAS Center for Excellence in Molecular Plant Sciences Chinese Academy of Sciences Shanghai China
| | - Mingbing Zhou
- State Key Laboratory of Subtropical Silviculture Zhejiang A&F University Hangzhou China
- Zhejiang Provincial Collaborative Innovation Centre for Bamboo Resources and High‐efficiency Utilization Zhejiang A&F University Hangzhou China
| |
Collapse
|
6
|
Orozco-Arias S, Isaza G, Guyot R. Retrotransposons in Plant Genomes: Structure, Identification, and Classification through Bioinformatics and Machine Learning. Int J Mol Sci 2019; 20:E3837. [PMID: 31390781 PMCID: PMC6696364 DOI: 10.3390/ijms20153837] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/31/2019] [Accepted: 08/02/2019] [Indexed: 01/26/2023] Open
Abstract
Transposable elements (TEs) are genomic units able to move within the genome of virtually all organisms. Due to their natural repetitive numbers and their high structural diversity, the identification and classification of TEs remain a challenge in sequenced genomes. Although TEs were initially regarded as "junk DNA", it has been demonstrated that they play key roles in chromosome structures, gene expression, and regulation, as well as adaptation and evolution. A highly reliable annotation of these elements is, therefore, crucial to better understand genome functions and their evolution. To date, much bioinformatics software has been developed to address TE detection and classification processes, but many problematic aspects remain, such as the reliability, precision, and speed of the analyses. Machine learning and deep learning are algorithms that can make automatic predictions and decisions in a wide variety of scientific applications. They have been tested in bioinformatics and, more specifically for TEs, classification with encouraging results. In this review, we will discuss important aspects of TEs, such as their structure, importance in the evolution and architecture of the host, and their current classifications and nomenclatures. We will also address current methods and their limitations in identifying and classifying TEs.
Collapse
Affiliation(s)
- Simon Orozco-Arias
- Department of Computer Science, Universidad Autónoma de Manizales, Manizales 170001, Colombia
- Department of Systems and Informatics, Universidad de Caldas, Manizales 170001, Colombia
| | - Gustavo Isaza
- Department of Systems and Informatics, Universidad de Caldas, Manizales 170001, Colombia
| | - Romain Guyot
- Department of Electronics and Automatization, Universidad Autónoma de Manizales, Manizales 170001, Colombia.
- Institut de Recherche pour le Développement, CIRAD, University Montpellier, 34000 Montpellier, France.
| |
Collapse
|
7
|
Pasin F, Menzel W, Daròs J. Harnessed viruses in the age of metagenomics and synthetic biology: an update on infectious clone assembly and biotechnologies of plant viruses. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1010-1026. [PMID: 30677208 PMCID: PMC6523588 DOI: 10.1111/pbi.13084] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/09/2018] [Accepted: 01/15/2019] [Indexed: 05/12/2023]
Abstract
Recent metagenomic studies have provided an unprecedented wealth of data, which are revolutionizing our understanding of virus diversity. A redrawn landscape highlights viruses as active players in the phytobiome, and surveys have uncovered their positive roles in environmental stress tolerance of plants. Viral infectious clones are key tools for functional characterization of known and newly identified viruses. Knowledge of viruses and their components has been instrumental for the development of modern plant molecular biology and biotechnology. In this review, we provide extensive guidelines built on current synthetic biology advances that streamline infectious clone assembly, thus lessening a major technical constraint of plant virology. The focus is on generation of infectious clones in binary T-DNA vectors, which are delivered efficiently to plants by Agrobacterium. We then summarize recent applications of plant viruses and explore emerging trends in microbiology, bacterial and human virology that, once translated to plant virology, could lead to the development of virus-based gene therapies for ad hoc engineering of plant traits. The systematic characterization of plant virus roles in the phytobiome and next-generation virus-based tools will be indispensable landmarks in the synthetic biology roadmap to better crops.
Collapse
Affiliation(s)
- Fabio Pasin
- Agricultural Biotechnology Research CenterAcademia SinicaTaipeiTaiwan
| | - Wulf Menzel
- Leibniz Institute DSMZ‐German Collection of Microorganisms and Cell CulturesBraunschweigGermany
| | - José‐Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas‐Universitat Politècnica de València)ValenciaSpain
| |
Collapse
|
8
|
Suguiyama VF, Vasconcelos LAB, Rossi MM, Biondo C, de Setta N. The population genetic structure approach adds new insights into the evolution of plant LTR retrotransposon lineages. PLoS One 2019; 14:e0214542. [PMID: 31107873 PMCID: PMC6527191 DOI: 10.1371/journal.pone.0214542] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/14/2019] [Indexed: 12/30/2022] Open
Abstract
Long terminal repeat retrotransposons (LTR-RTs) in plant genomes differ in abundance, structure and genomic distribution, reflecting the large number of evolutionary lineages. Elements within lineages can be considered populations, in which each element is an individual in its genomic environment. In this way, it would be reasonable to apply microevolutionary analyses to understand transposable element (TE) evolution, such as those used to study the genetic structure of natural populations. Here, we applied a Bayesian method to infer genetic structure of populations together with classical phylogenetic and dating tools to analyze LTR-RT evolution using the monocot Setaria italica as a model species. In contrast to a phylogeny, the Bayesian clusterization method identifies populations by assigning individuals to one or more clusters according to the most probabilistic scenario of admixture, based on genetic diversity patterns. In this work, each LTR-RT insertion was considered to be one individual and each LTR-RT lineage was considered to be a single species. Nine evolutionary lineages of LTR-RTs were identified in the S. italica genome that had different genetic structures with variable numbers of clusters and levels of admixture. Comprehensive analysis of the phylogenetic, clusterization and time of insertion data allowed us to hypothesize that admixed elements represent sequences that harbor ancestral polymorphic sequence signatures. In conclusion, application of microevolutionary concepts in genome evolution studies is suitable as a complementary approach to phylogenetic analyses to address the evolutionary history and functional features of TEs.
Collapse
Affiliation(s)
- Vanessa Fuentes Suguiyama
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| | | | - Maria Magdalena Rossi
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Cibele Biondo
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| | - Nathalia de Setta
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
- * E-mail:
| |
Collapse
|
9
|
Kalendar R, Amenov A, Daniyarov A. Use of retrotransposon-derived genetic markers to analyse genomic variability in plants. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 46:15-29. [PMID: 30939255 DOI: 10.1071/fp18098] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 08/23/2018] [Indexed: 06/09/2023]
Abstract
Transposable elements (TEs) are common mobile genetic elements comprising several classes and making up the majority of eukaryotic genomes. The movement and accumulation of TEs has been a major force shaping the genes and genomes of most organisms. Most eukaryotic genomes are dominated by retrotransposons and minimal DNA transposon accumulation. The 'copy and paste' lifecycle of replicative transposition produces new genome insertions without excising the original element. Horizontal TE transfer among lineages is rare. TEs represent a reservoir of potential genomic instability and RNA-level toxicity. Many TEs appear static and nonfunctional, but some are capable of replicating and mobilising to new positions, and somatic transposition events have been observed. The overall structure of retrotransposons and the domains responsible for the phases of their replication are highly conserved in all eukaryotes. TEs are important drivers of species diversity and exhibit great variety in their structure, size and transposition mechanisms, making them important putative actors in evolution. Because TEs are abundant in plant genomes, various applications have been developed to exploit polymorphisms in TE insertion patterns, including conventional or anchored PCR, and quantitative or digital PCR with primers for the 5' or 3' junction. Alternatively, the retrotransposon junction can be mapped using high-throughput next-generation sequencing and bioinformatics. With these applications, TE insertions can be rapidly, easily and accurately identified, or new TE insertions can be found. This review provides an overview of the TE-based applications developed for plant species and assesses the contributions of TEs to the analysis of plants' genetic diversity.
Collapse
Affiliation(s)
- Ruslan Kalendar
- Department of Agricultural Sciences, PO Box 27 (Latokartanonkaari 5), FI-00014 University of Helsinki, Helsinki, Finland
| | - Asset Amenov
- RSE 'National Center for Biotechnology', 13/5 Kurgalzhynskoye Road, Astana, 010000, Kazakhstan
| | - Asset Daniyarov
- RSE 'National Center for Biotechnology', 13/5 Kurgalzhynskoye Road, Astana, 010000, Kazakhstan
| |
Collapse
|