1
|
Jeon HW, Iwakawa H, Naramoto S, Herrfurth C, Gutsche N, Schlüter T, Kyozuka J, Miyauchi S, Feussner I, Zachgo S, Nakagami H. Contrasting and conserved roles of NPR pathways in diverged land plant lineages. THE NEW PHYTOLOGIST 2024; 243:2295-2310. [PMID: 39056290 DOI: 10.1111/nph.19981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 06/26/2024] [Indexed: 07/28/2024]
Abstract
The NPR proteins function as salicylic acid (SA) receptors in Arabidopsis thaliana. AtNPR1 plays a central role in SA-induced transcriptional reprogramming whereby positively regulates SA-mediated defense. NPRs are found in the genomes of nearly all land plants. However, we know little about the molecular functions and physiological roles of NPRs in most plant species. We conducted phylogenetic and alignment analyses of NPRs from 68 species covering the significant lineages of land plants. To investigate NPR functions in bryophyte lineages, we generated and characterized NPR loss-of-function mutants in the liverwort Marchantia polymorpha. Brassicaceae NPR1-like proteins have characteristically gained or lost functional residues identified in AtNPRs, pointing to the possibility of a unique evolutionary trajectory for the Brassicaceae NPR1-like proteins. We find that the only NPR in M. polymorpha, MpNPR, is not the master regulator of SA-induced transcriptional reprogramming and negatively regulates bacterial resistance in this species. The Mpnpr transcriptome suggested roles of MpNPR in heat and far-red light responses. We identify both Mpnpr and Atnpr1-1 display enhanced thermomorphogenesis. Interspecies complementation analysis indicated that the molecular properties of AtNPR1 and MpNPR are partially conserved. We further show that MpNPR has SA-binding activity. NPRs and NPR-associated pathways have evolved distinctively in diverged land plant lineages to cope with different terrestrial environments.
Collapse
Affiliation(s)
- Hyung-Woo Jeon
- Max-Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Hidekazu Iwakawa
- Max-Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
- School of Biological Science and Technology, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Satoshi Naramoto
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577, Japan
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Cornelia Herrfurth
- Service Unit for Metabolomics and Lipidomics, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, 37077, Göttingen, Germany
- Department for Plant Biochemistry, Albrecht von Haller Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, 37077, Göttingen, Germany
| | - Nora Gutsche
- Division of Botany, Osnabrück University, 49076, Osnabrück, Germany
| | - Titus Schlüter
- Max-Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Junko Kyozuka
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577, Japan
| | - Shingo Miyauchi
- Max-Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Ivo Feussner
- Service Unit for Metabolomics and Lipidomics, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, 37077, Göttingen, Germany
- Department for Plant Biochemistry, Albrecht von Haller Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, 37077, Göttingen, Germany
| | - Sabine Zachgo
- Division of Botany, Osnabrück University, 49076, Osnabrück, Germany
| | - Hirofumi Nakagami
- Max-Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| |
Collapse
|
2
|
Kirbis A, Waller M, Ricca M, Bont Z, Neubauer A, Goffinet B, Szövényi P. Transcriptional Landscapes of Divergent Sporophyte Development in Two Mosses, Physcomitrium (Physcomitrella) patens and Funaria hygrometrica. FRONTIERS IN PLANT SCIENCE 2020; 11:747. [PMID: 32587596 PMCID: PMC7299128 DOI: 10.3389/fpls.2020.00747] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/11/2020] [Indexed: 05/03/2023]
Abstract
Understanding the molecular basis of morphological shifts is a fundamental question of evolutionary biology. New morphologies may arise through the birth/death of genes (gene gain/loss) or by reutilizing existing gene sets. Yet, the relative contribution of these two processes to radical morphological shifts is still poorly understood. Here, we use the model system of two mosses, Funaria hygrometrica and Physcomitrium (Physcomitrella) patens, to investigate the molecular mechanisms underlying contrasting sporophyte architectures. We used comparative analysis of time-series expression data for four stages of sporophyte development in both species to address this question in detail. We found that large-scale differences in sporophytic architecture are mainly governed by orthologous (i.e., shared) genes frequently experiencing temporal gene expression shifts between the two species. While the absolute number of species-specific genes expressed during sporophyte development is somewhat smaller, we observed a significant increase of their proportion in preferentially sporophyte expressed genes, suggesting a fundamental role in the sporophyte phase. However, further functional studies are necessary to determine their contribution to diverging sporophyte morphologies. Our results add to the growing set of studies suggesting that radical changes in morphology may rely on the heterochronic expression of conserved regulators.
Collapse
Affiliation(s)
- Alexander Kirbis
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich and Zurich-Basel Plant Science Center, Zurich, Switzerland
| | - Manuel Waller
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich and Zurich-Basel Plant Science Center, Zurich, Switzerland
| | - Mariana Ricca
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Zoe Bont
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Anna Neubauer
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich and Zurich-Basel Plant Science Center, Zurich, Switzerland
| | - Bernard Goffinet
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, United States
| | - Péter Szövényi
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich and Zurich-Basel Plant Science Center, Zurich, Switzerland
- *Correspondence: Péter Szövényi,
| |
Collapse
|