1
|
Wanika L, Egan JR, Swaminathan N, Duran-Villalobos CA, Branke J, Goldrick S, Chappell M. Structural and practical identifiability analysis in bioengineering: a beginner's guide. J Biol Eng 2024; 18:20. [PMID: 38438947 PMCID: PMC11465550 DOI: 10.1186/s13036-024-00410-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/02/2024] [Indexed: 03/06/2024] Open
Abstract
Advancements in digital technology have brought modelling to the forefront in many disciplines from healthcare to architecture. Mathematical models, often represented using parametrised sets of ordinary differential equations, can be used to characterise different processes. To infer possible estimates for the unknown parameters, these models are usually calibrated using associated experimental data. Structural and practical identifiability analyses are a key component that should be assessed prior to parameter estimation. This is because identifiability analyses can provide insights as to whether or not a parameter can take on single, multiple, or even infinitely or countably many values which will ultimately have an impact on the reliability of the parameter estimates. Also, identifiability analyses can help to determine whether the data collected are sufficient or of good enough quality to truly estimate the parameters or if more data or even reparameterization of the model is necessary to proceed with the parameter estimation process. Thus, such analyses also provide an important role in terms of model design (structural identifiability analysis) and the collection of experimental data (practical identifiability analysis). Despite the popularity of using data to estimate the values of unknown parameters, structural and practical identifiability analyses of these models are often overlooked. Possible reasons for non-consideration of application of such analyses may be lack of awareness, accessibility, and usability issues, especially for more complicated models and methods of analysis. The aim of this study is to introduce and perform both structural and practical identifiability analyses in an accessible and informative manner via application to well established and commonly accepted bioengineering models. This will help to improve awareness of the importance of this stage of the modelling process and provide bioengineering researchers with an understanding of how to utilise the insights gained from such analyses in future model development.
Collapse
Affiliation(s)
- Linda Wanika
- School of Engineering, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Joseph R Egan
- Department of Biochemical Engineering, University College London, London, United Kingdom
| | - Nivedhitha Swaminathan
- Department of Biochemical Engineering, University College London, London, United Kingdom
| | - Carlos A Duran-Villalobos
- Department of Electrical and Electronic Engineering, University of Manchester, Manchester, United Kingdom
| | - Juergen Branke
- Warwick Business School, University of Warwick, Coventry, United Kingdom
| | - Stephen Goldrick
- Department of Biochemical Engineering, University College London, London, United Kingdom
| | - Mike Chappell
- School of Engineering, University of Warwick, Coventry, CV4 7AL, United Kingdom.
| |
Collapse
|
2
|
Gao Y, Thiele W, Saleh O, Scossa F, Arabi F, Zhang H, Sampathkumar A, Kühn K, Fernie A, Bock R, Schöttler MA, Zoschke R. Chloroplast translational regulation uncovers nonessential photosynthesis genes as key players in plant cold acclimation. THE PLANT CELL 2022; 34:2056-2079. [PMID: 35171295 PMCID: PMC9048916 DOI: 10.1093/plcell/koac056] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 02/12/2022] [Indexed: 05/04/2023]
Abstract
Plants evolved efficient multifaceted acclimation strategies to cope with low temperatures. Chloroplasts respond to temperature stimuli and participate in temperature sensing and acclimation. However, very little is known about the involvement of chloroplast genes and their expression in plant chilling tolerance. Here we systematically investigated cold acclimation in tobacco seedlings over 2 days of exposure to low temperatures by examining responses in chloroplast genome copy number, transcript accumulation and translation, photosynthesis, cell physiology, and metabolism. Our time-resolved genome-wide investigation of chloroplast gene expression revealed substantial cold-induced translational regulation at both the initiation and elongation levels, in the virtual absence of changes at the transcript level. These cold-triggered dynamics in chloroplast translation are widely distinct from previously described high light-induced effects. Analysis of the gene set responding significantly to the cold stimulus suggested nonessential plastid-encoded subunits of photosynthetic protein complexes as novel players in plant cold acclimation. Functional characterization of one of these cold-responsive chloroplast genes by reverse genetics demonstrated that the encoded protein, the small cytochrome b6f complex subunit PetL, crucially contributes to photosynthetic cold acclimation. Together, our results uncover an important, previously underappreciated role of chloroplast translational regulation in plant cold acclimation.
Collapse
Affiliation(s)
- Yang Gao
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Wolfram Thiele
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Omar Saleh
- Institut für Biologie, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), 06120, Germany
| | - Federico Scossa
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
- Council for Agricultural Research and Economics, Research Center for Genomics and Bioinformatics (CREA-GB), Rome, 00178, Italy
| | - Fayezeh Arabi
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Hongmou Zhang
- Institute of Optical Sensor Systems, German Aerospace Center (DLR), Berlin, 12489, Germany
| | - Arun Sampathkumar
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Kristina Kühn
- Institut für Biologie, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), 06120, Germany
| | - Alisdair Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Ralph Bock
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Mark A Schöttler
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | | |
Collapse
|
3
|
Gao Y, Thiele W, Saleh O, Scossa F, Arabi F, Zhang H, Sampathkumar A, Kühn K, Fernie A, Bock R, Schöttler MA, Zoschke R. Chloroplast translational regulation uncovers nonessential photosynthesis genes as key players in plant cold acclimation. THE PLANT CELL 2022; 34:2056-2079. [PMID: 35171295 DOI: 10.1093/plcell/koac056%jtheplantcell] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 02/12/2022] [Indexed: 05/28/2023]
Abstract
Plants evolved efficient multifaceted acclimation strategies to cope with low temperatures. Chloroplasts respond to temperature stimuli and participate in temperature sensing and acclimation. However, very little is known about the involvement of chloroplast genes and their expression in plant chilling tolerance. Here we systematically investigated cold acclimation in tobacco seedlings over 2 days of exposure to low temperatures by examining responses in chloroplast genome copy number, transcript accumulation and translation, photosynthesis, cell physiology, and metabolism. Our time-resolved genome-wide investigation of chloroplast gene expression revealed substantial cold-induced translational regulation at both the initiation and elongation levels, in the virtual absence of changes at the transcript level. These cold-triggered dynamics in chloroplast translation are widely distinct from previously described high light-induced effects. Analysis of the gene set responding significantly to the cold stimulus suggested nonessential plastid-encoded subunits of photosynthetic protein complexes as novel players in plant cold acclimation. Functional characterization of one of these cold-responsive chloroplast genes by reverse genetics demonstrated that the encoded protein, the small cytochrome b6f complex subunit PetL, crucially contributes to photosynthetic cold acclimation. Together, our results uncover an important, previously underappreciated role of chloroplast translational regulation in plant cold acclimation.
Collapse
Affiliation(s)
- Yang Gao
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Wolfram Thiele
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Omar Saleh
- Institut für Biologie, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), 06120, Germany
| | - Federico Scossa
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
- Council for Agricultural Research and Economics, Research Center for Genomics and Bioinformatics (CREA-GB), Rome, 00178, Italy
| | - Fayezeh Arabi
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Hongmou Zhang
- Institute of Optical Sensor Systems, German Aerospace Center (DLR), Berlin, 12489, Germany
| | - Arun Sampathkumar
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Kristina Kühn
- Institut für Biologie, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), 06120, Germany
| | - Alisdair Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Ralph Bock
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Mark A Schöttler
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Reimo Zoschke
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| |
Collapse
|
4
|
Becskei A, Rahaman S. The life and death of RNA across temperatures. Comput Struct Biotechnol J 2022; 20:4325-4336. [PMID: 36051884 PMCID: PMC9411577 DOI: 10.1016/j.csbj.2022.08.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/04/2022] [Accepted: 08/04/2022] [Indexed: 11/05/2022] Open
Abstract
Temperature is an environmental condition that has a pervasive effect on cells along with all the molecules and reactions in them. The mechanisms by which prototypical RNA molecules sense and withstand heat have been identified mostly in bacteria and archaea. The relevance of these phenomena is, however, broader, and similar mechanisms have been recently found throughout the tree of life, from sex determination in reptiles to adaptation of viral RNA polymerases, to genetic disorders in humans. We illustrate the temperature dependence of RNA metabolism with examples from the synthesis to the degradation of mRNAs, and review recently emerged questions. Are cells exposed to greater temperature variations and gradients than previously surmised? How do cells reconcile the conflicting thermal stability requirements of primary and tertiary structures of RNAs? To what extent do enzymes contribute to the temperature compensation of the reaction rates in mRNA turnover by lowering the energy barrier of the catalyzed reactions? We conclude with the ecological, forensic applications of the temperature-dependence of RNA degradation and the biotechnological aspects of mRNA vaccine production.
Collapse
|