1
|
Peer LA, Wani AA, Lone AA, Dar ZA, Mir BA. Drought stress memory in maize: understanding and harnessing the past for future resilience. PLANT CELL REPORTS 2025; 44:101. [PMID: 40278890 DOI: 10.1007/s00299-025-03494-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 04/11/2025] [Indexed: 04/26/2025]
Abstract
Maize (Zea mays L.), a cornerstone of global food security, faces significant challenges due to drought stress, which disrupts its growth, development, and productivity. This review synthesizes advances in our understanding of drought stress memory, a mechanism that enables maize to "remember" prior drought exposure through transcriptional, epigenetic, and physiological pathways. Key regulators, including transcription factors (ZmEREB24 and ZmNF-YC12) and epigenetic modifications (DNA methylation and histone acetylation), orchestrate stress-responsive pathways that ensure rapid adaptation to recurrent drought events. Complementing these molecular mechanisms, physiological adaptations, such as optimized root and leaf architecture, enhanced water-use efficiency, and antioxidant defenses, further strengthen drought tolerance. Practical applications, including molecular priming techniques (e.g., osmopriming, hydropriming, nanoparticles) and advanced genetic tools (CRISPR/Cas9, GWAS), promise scalable solutions for breeding drought-resilient maize varieties. Despite this progress, challenges remain, including genotype-specific variability, scalability, and trade-offs between resilience and yield. This review provides a roadmap for integrating laboratory discoveries with field-level practices, bridging molecular and agronomic innovations to address climate variability and ensure sustainable maize production and global food security.
Collapse
Affiliation(s)
- Latif A Peer
- Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India.
| | - Aijaz A Wani
- Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India
| | - Ajaz A Lone
- Dryland Agriculture Research Station, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir, 191121, India
| | - Zahoor A Dar
- Dryland Agriculture Research Station, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir, 191121, India
| | - Bilal A Mir
- Department of Botany, North Campus, University of Kashmir, Delina, Jammu and Kashmir, 193201, India
| |
Collapse
|
2
|
Miskevish F, Lodeyro A, Ponso MA, Bouzo C, Meeley R, Timmermans MC, Dotto M. Maize mutants in miR394-regulated genes show improved drought tolerance. PHYSIOLOGIA PLANTARUM 2025; 177:e70155. [PMID: 40102048 DOI: 10.1111/ppl.70155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 03/03/2025] [Indexed: 03/20/2025]
Abstract
Water limitation represents one of the major threats to agricultural production, which often leads to drought stress and results in compromised growth, development and yield of crop species. Drought tolerance has been intensively studied in search of potential targets for molecular approaches to crop improvement. However, drought adaptive traits are complex, and our understanding of the physiological and genetic basis of drought tolerance is still incomplete. The miR394-LCR pathway is a conserved regulatory module shown to participate in several aspects of plant growth and development, including stress response. Here, we characterized the miR394 pathway in maize, which harbours two genetic loci producing an evolutionarily conserved mature zma-miR394 targeting two transcripts coding for F-Box proteins, named hereby ZmLCR1 and ZmLCR2. Arabidopsis plants overexpressing the zma-MIR394B gene showed high tolerance to drought conditions compared to control plants. Moreover, analysis of the growth and development of single and double maize mutant plants in ZmLCR genes indicate that these mutations do not affect plant fitness when they grow in normal watering conditions, but mutants showed better survival than wild-type plants under water deprivation conditions. This increased drought tolerance is based on more efficient intrinsic water use, changes in root architecture and increased epicuticular wax content under water-limiting conditions. Our results indicate that the miR394-regulated ZmLCR genes are involved in drought stress tolerance and are remarkable candidates for maize crop improvement.
Collapse
Affiliation(s)
- Franco Miskevish
- Instituto de Ciencias Agropecuarias del Litoral (ICIAGRO-Litoral, UNL-CONICET), Facultad de Ciencias Agrarias, Esperanza, Santa Fe, Argentina
| | - Anabella Lodeyro
- Instituto de Biología Celular y Molecular de Rosario (IBR, CONCIET-UNR), Rosario, Santa Fe, Argentina
| | - María Agustina Ponso
- Instituto de Ciencias Agropecuarias del Litoral (ICIAGRO-Litoral, UNL-CONICET), Facultad de Ciencias Agrarias, Esperanza, Santa Fe, Argentina
| | - Carlos Bouzo
- Instituto de Ciencias Agropecuarias del Litoral (ICIAGRO-Litoral, UNL-CONICET), Facultad de Ciencias Agrarias, Esperanza, Santa Fe, Argentina
| | | | - Marja C Timmermans
- Center for Plant Molecular Biology, University of Tuebingen, Tuebingen, Germany
| | - Marcela Dotto
- Instituto de Ciencias Agropecuarias del Litoral (ICIAGRO-Litoral, UNL-CONICET), Facultad de Ciencias Agrarias, Esperanza, Santa Fe, Argentina
| |
Collapse
|
3
|
Peer LA, Bhat MY, Lone AA, Dar ZA, Mir BA. Genetic, molecular and physiological crosstalk during drought tolerance in maize (Zea mays): pathways to resilient agriculture. PLANTA 2024; 260:81. [PMID: 39196449 DOI: 10.1007/s00425-024-04517-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 08/22/2024] [Indexed: 08/29/2024]
Abstract
MAIN CONCLUSION This review comprehensively elucidates maize drought tolerance mechanisms, vital for global food security. It highlights genetic networks, key genes, CRISPR-Cas applications, and physiological responses, guiding resilient variety development. Maize, a globally significant crop, confronts the pervasive challenge of drought stress, impacting its growth and yield significantly. Drought, an important abiotic stress, triggers a spectrum of alterations encompassing maize's morphological, biochemical, and physiological dimensions. Unraveling and understanding these mechanisms assumes paramount importance for ensuring global food security. Approaches like developing drought-tolerant varieties and harnessing genomic and molecular applications emerge as effective measures to mitigate the negative effects of drought. The multifaceted nature of drought tolerance in maize has been unfolded through complex genetic networks. Additionally, quantitative trait loci mapping and genome-wide association studies pinpoint key genes associated with drought tolerance, influencing morphophysiological traits and yield. Furthermore, transcription factors like ZmHsf28, ZmNAC20, and ZmNF-YA1 play pivotal roles in drought response through hormone signaling, stomatal regulation, and gene expression. Genes, such as ZmSAG39, ZmRAFS, and ZmBSK1, have been reported to be pivotal in enhancing drought tolerance through diverse mechanisms. Integration of CRISPR-Cas9 technology, targeting genes like gl2 and ZmHDT103, emerges as crucial for precise genetic enhancement, highlighting its role in safeguarding global food security amid pervasive drought challenges. Thus, decoding the genetic and molecular underpinnings of drought tolerance in maize sheds light on its resilience and paves the way for cultivating robust and climate-smart varieties, thus safeguarding global food security amid climate challenges. This comprehensive review covers quantitative trait loci mapping, genome-wide association studies, key genes and functions, CRISPR-Cas applications, transcription factors, physiological responses, signaling pathways, offering a nuanced understanding of intricate mechanisms involved in maize drought tolerance.
Collapse
Affiliation(s)
- Latif A Peer
- Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India.
| | - Mohd Y Bhat
- Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India
| | - Ajaz A Lone
- Dryland Agriculture Research Station, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir, 191121, India
| | - Zahoor A Dar
- Dryland Agriculture Research Station, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir, 191121, India
| | - Bilal A Mir
- Department of Botany, North Campus, University of Kashmir, Delina, Srinagar, Jammu and Kashmir, 193201, India
| |
Collapse
|
4
|
Elshamly AMS, Abaza AS. Precise partial root-zone irrigation technique and potassium-zinc fertigation management improve maize physio-biochemical responses, yield, and water use in arid climate. BMC PLANT BIOLOGY 2024; 24:775. [PMID: 39143521 PMCID: PMC11325621 DOI: 10.1186/s12870-024-05467-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/29/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND To optimize irrigation water use and productivity, understanding the interactions between plants, irrigation techniques, and fertilization practices is crucial. Therefore, the experiment aims to assess the effectiveness of two application methods of potassium humate combined with chelated zinc under partial root-zone drip irrigation techniques on maize nutrient uptake, yield, and irrigation water use efficiency across two irrigation levels. METHODS Open-field experiments were carried out in two summer seasons of 2021 and 2022 under alternate and fixed partial root-zone drip irrigation techniques to investigate their impacts at two irrigation levels and applied foliar and soil applications of potassium humate or chelated zinc in a sole and combinations on maize. RESULTS Deficit irrigation significantly increased hydrogen peroxide levels and decreased proline, antioxidant enzymes, carbohydrate, chlorophyll (a + b), and nutrient uptake in both partial root-zone techniques. The implementation of combined soil application of potassium humate and chelated zinc under drought conditions on maize led to varying impacts on antioxidant enzymes and nutritional status, depending on the type of partial root-zone technique. Meanwhile, the results showed that fixed partial root-zone irrigation diminished the negative effects of drought stress by enhancing phosphorus uptake (53.8%), potassium uptake (59.2%), proline (74.4%) and catalase (75%); compared to the control. These enhancements may contribute to improving the defense system of maize plants in such conditions. On the other hand, the same previous treatments under alternate partial root zone modified the defense mechanism of plants and improved the contents of peroxidase, superoxide dismutase, and the uptake of magnesium, zinc, and iron by 81.3%, 82.3%, 85.1%, 56.9%, and 80.2%, respectively. CONCLUSIONS Adopting 75% of the irrigation requirements and treating maize plants with the soil application of 3 g l-1 potassium humate combined with 1.25 kg ha-1 chelated zinc under alternate partial root-zone technique, resulted in the maximum root length, leaf water content, chlorophyll content, yield, and irrigation water use efficiency.
Collapse
Affiliation(s)
- Ayman M S Elshamly
- Water Studies and Research Complex. National Water Research Center, Cairo, Egypt.
- National Water Research Center, Research Institute for Groundwater, El-Kanater, El-Khairiya, Egypt.
| | - A S Abaza
- Water Studies and Research Complex. National Water Research Center, Cairo, Egypt
| |
Collapse
|
5
|
Wang X, Zhao W, Wei X, Sun Y, Dong S. Molecular mechanism of drought resistance in soybean roots revealed using physiological and multi-omics analyses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108451. [PMID: 38402799 DOI: 10.1016/j.plaphy.2024.108451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 02/27/2024]
Abstract
Soybeans are one of the most cultivated crops worldwide and drought can seriously affect their growth and development. Many studies have elucidated the mechanisms through which soybean leaves respond to drought; however, little is known about these mechanisms in roots. We used two soybean varieties with different drought tolerances to study the morphological, physiological, and molecular response mechanisms of the root system to drought stress in seedlings. We found that drought stress led to a significant decrease in the root traits and an increase in antioxidant enzyme activity in the two varieties. Drought-resistant varieties accumulate large amounts of flavonoids and phenolic acids at the metabolic level, which causes variations in drought resistance. Additionally, differences in gene expression and drought-resistance pathways between the two varieties were clarified using transcriptome analysis. Through a multi-omics joint analysis, phenylpropanoid and isoflavonoid biosynthesis were identified as the core drought resistance pathways in soybean roots. Candidate genes and marker metabolites affecting drought resistance were identified. The phenylpropanoid pathway confers drought tolerance to roots by maintaining a high level of POD activity and mediates the biosynthesis of various secondary drought-resistant metabolites to resist drought stress. This study provides useful data for investigating plant root drought responses and offers theoretical support for plant breeding for drought resistance.
Collapse
Affiliation(s)
- Xiyue Wang
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Wei Zhao
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Xinhe Wei
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Yanbin Sun
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Shoukun Dong
- College of Agriculture, Northeast Agricultural University, Harbin, China.
| |
Collapse
|
6
|
Rishmawi L, Bauget F, Protto V, Bauland C, Nacry P, Maurel C. Natural variation of maize root hydraulic architecture underlies highly diverse water uptake capacities. PLANT PHYSIOLOGY 2023; 192:2404-2418. [PMID: 37052178 PMCID: PMC10315320 DOI: 10.1093/plphys/kiad213] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/21/2023] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
Plant water uptake is determined by the root system architecture and its hydraulic capacity, which together define the root hydraulic architecture. The current research aims at understanding the water uptake capacities of maize (Zea mays), a model organism and major crop. We explored the genetic variations within a collection of 224 maize inbred Dent lines and successively defined core genotype subsets to access multiple architectural, anatomical, and hydraulic parameters in the primary root (PR) and seminal roots (SR) of hydroponically grown seedlings. We found 9-, 3.5-, and 12.4-fold genotypic differences for root hydraulics (Lpr), PR size, and lateral root size, respectively, that shaped wide and independent variations of root structure and function. Within genotypes, PR and SR showed similarities in hydraulics and, to a lesser extent, in anatomy. They had comparable aquaporin activity profiles that, however, could not be explained by aquaporin expression levels. Genotypic variations in the size and number of late meta xylem vessels were positively correlated with Lpr. Inverse modeling further revealed dramatic genotypic differences in the xylem conductance profile. Thus, tremendous natural variation of maize root hydraulic architecture underlies a high diversity of water uptake strategies and paves the way to quantitative genetic dissection of its elementary traits.
Collapse
Affiliation(s)
- Louai Rishmawi
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, 34060 Montpellier, France
| | - Fabrice Bauget
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, 34060 Montpellier, France
| | - Virginia Protto
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, 34060 Montpellier, France
| | - Cyril Bauland
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE—Le Moulon, Gif-sur-Yvette, France
| | - Philippe Nacry
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, 34060 Montpellier, France
| | - Christophe Maurel
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, 34060 Montpellier, France
| |
Collapse
|
7
|
Wang Y, Wang J, Guo H, Wu X, Hao M, Zhang R. Integrative transcriptome and metabolome analysis reveals the mechanism of exogenous melatonin alleviating drought stress in maize roots. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 199:107723. [PMID: 37163805 DOI: 10.1016/j.plaphy.2023.107723] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/15/2023] [Accepted: 04/25/2023] [Indexed: 05/12/2023]
Abstract
Melatonin (MT) is essential for plant development and drought adaptation. However, the molecular and metabolic mechanisms underlying MT-induced drought tolerance in maize roots remain largely unclear. Herein, we investigated the effects of MT on drought tolerance in maize roots using integrated transcriptomic and metabolomic analyses, and identified MT-induced genes and metabolites associated with drought resistance. Compared with the untreated control plants, MT application alleviated the deleterious effects of drought on roots, by decreasing the malondialdehyde level and increasing the solute potential, eventually promoting root growth. Transcriptome and metabolome analysis demonstrated that MT significantly upregulates the expression of genes related to flavonoid biosynthesis (PAL, C4H, 4CL, HCT, CHS, CHI, F3'5'H, and DFR), activates drought-responsive transcription factors (ERFs, NACs, MYBs, and bHLHs), and regulates hormone signaling-related genes, especially ethylene response factors (ERF4, ERF81, and ERF110). Moreover, MT increased the accumulation of flavonoid metabolites, particularly apigenin, luteolin, and quercetin, under drought-stress conditions. These findings were further supported by quantitative real-time polymerase chain reaction analysis and total flavonoid measurements. Altogether, our findings suggest that MT promotes maize root growth during drought by regulating flavonoid synthesis pathways, transcription factors, and plant hormone signals. This study provides new insights into the complex mechanisms by which MT enhances crop resistance to drought damage.
Collapse
Affiliation(s)
- Yifan Wang
- College of Agronomy, Northwest A&F University, Shaanxi, Yangling, 712100, China
| | - Jiarui Wang
- College of Agronomy, Northwest A&F University, Shaanxi, Yangling, 712100, China
| | - Haoxue Guo
- College of Agronomy, Northwest A&F University, Shaanxi, Yangling, 712100, China
| | - Xi Wu
- College of Agronomy, Northwest A&F University, Shaanxi, Yangling, 712100, China
| | - Miaoyi Hao
- College of Agronomy, Northwest A&F University, Shaanxi, Yangling, 712100, China
| | - Renhe Zhang
- College of Agronomy, Northwest A&F University, Shaanxi, Yangling, 712100, China.
| |
Collapse
|
8
|
Li Y, Niu L, Zhou X, Liu H, Tai F, Wang W. Modifying the Expression of Cysteine Protease Gene PCP Affects Pollen Development, Germination and Plant Drought Tolerance in Maize. Int J Mol Sci 2023; 24:ijms24087406. [PMID: 37108569 PMCID: PMC10138719 DOI: 10.3390/ijms24087406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/13/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023] Open
Abstract
Cysteine proteases (CPs) are vital proteolytic enzymes that play critical roles in various plant processes. However, the particular functions of CPs in maize remain largely unknown. We recently identified a pollen-specific CP (named PCP), which highly accumulated on the surface of maize pollen. Here, we reported that PCP played an important role in pollen germination and drought response in maize. Overexpression of PCP inhibited pollen germination, while mutation of PCP promoted pollen germination to some extent. Furthermore, we observed that germinal apertures of pollen grains in the PCP-overexpression transgenic lines were excessively covered, whereas this phenomenon was not observed in the wild type (WT), suggesting that PCP regulated pollen germination by affecting the germinal aperture structure. In addition, overexpression of PCP enhanced drought tolerance in maize plants, along with the increased activities of the antioxidant enzymes and the decreased numbers of the root cortical cells. Conversely, mutation of PCP significantly impaired drought tolerance. These results may aid in clarifying the precise functions of CPs in maize and contribute to the development of drought-tolerant maize materials.
Collapse
Affiliation(s)
- Yanhua Li
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China
| | - Liangjie Niu
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China
| | - Xiaoli Zhou
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China
| | - Hui Liu
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China
| | - Fuju Tai
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China
| | - Wei Wang
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China
| |
Collapse
|
9
|
Jing L, Weng B, Yan D, Zhang S, Bi W, Yan S. The persistent impact of drought stress on the resilience of summer maize. FRONTIERS IN PLANT SCIENCE 2023; 14:1016993. [PMID: 36760635 PMCID: PMC9905683 DOI: 10.3389/fpls.2023.1016993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
Crop resilience refers to the adaptive ability of crops to resist drought at a certain level. Currently, most of the research focuses on the changes in root or photosynthesis traits of crops after drought and rehydration. Still, the persistence effect (drought period (T2) - rehydration period (T3) - harvest period (T4)) of drought stress on crops and quantitative estimation of resilience is still unclear. Field experiments were conducted in this study to determine the persistence effects on above-ground and below-ground growth indicators of summer maize at different levels and durations of drought. Next, an evaluation method for integrated resilience of summer maize was proposed, and a quantitative assessment of integrated resilience was made by Principal Component Analysis (PCA) and resilience index calculation. The results showed that the resilience of summer maize decreased with increasing drought levels, which persisted until harvest. Although summer maize resilience was strong after rewatering under light drought (DR1), declined after sustained rewatering. At the same time, production had decreased. However, a specific drought duration could improve the resilience of summer maize under light drought conditions. In particular, leaf biomass and root growth in the 30-50 cm layer could be enhanced under long duration light drought (LDR1), thus improving summer maize resilience and yield. Thus, under water shortage conditions, a certain level and duration drought could improve the resilience and yield of summer maize, which would persist until harvest. Clarifying the persistent effects on the growth indicators of summer maize and quantitatively evaluating the resilience of summer maize could improve agricultural food production and water use efficiency.
Collapse
Affiliation(s)
- Lanshu Jing
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, China
- College of Hydrology and Water Resources, Hohai University, Nanjing, China
| | - Baisha Weng
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, China
- Yinshanbeilu Grassland Eco-hydrology National Observation and Research Station, China Institute of Water Resources and Hydropower Research, Beijing, China
| | - Denghua Yan
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, China
| | - Shanjun Zhang
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, China
| | - Wuxia Bi
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, China
| | - Siying Yan
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, China
| |
Collapse
|
10
|
Olk DC, Dinnes DL, Hatfield RD, Scoresby JR, Darlington JW. Variable humic product effects on maize structural biochemistry across annual weather patterns and soil types in two Iowa (U.S.A.) production fields. FRONTIERS IN PLANT SCIENCE 2023; 13:1058141. [PMID: 36714749 PMCID: PMC9878286 DOI: 10.3389/fpls.2022.1058141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/21/2022] [Indexed: 06/18/2023]
Abstract
Agronomic benefits of humic product application to crops are receiving increasing attention, though underlying biochemical changes remain unexplored, especially in field settings. In this study, maize (Zea mays L.) concentrations of 11 phenol and five carbohydrate monomers were determined in whole plant stover (four growing seasons) and roots (two growing seasons) at physiological maturity for two rainfed fields in Iowa (USA) having humic product applications. Stover and root tissues tended toward greater phenol concentrations in a drier upland transect but greater carbohydrate concentrations in a wetter lowland transect. Two humic treatments further accentuated these trends in upland roots. Their phenol content increased significantly with humic application in the droughtier season of root sampling (2013). Phenol increases above the unamended control averaged 20% for each monomer. Total phenols increased above the control by 12% and 19% for the two humic treatments. Five carbohydrate monomers in the upland roots did not respond to humic application. In the second year of root sampling (2014), which had abundant rainfall, upland root phenols did not respond substantively to humic application, but root carbohydrates increased on average by 11 or 20% for the two humic treatments compared to the control, reaching significance (P< 0.10) in 7 of 10 cases. Upland stover phenol concentrations responded differently to humic product application in each of four years, ranging from numeric increases in the droughtiest year (2012) to significant decreases with abundant rainfall (2014). In the lowland transect, root phenols and carbohydrates and stover phenols responded inconsistently to humic application in four years. Stover carbohydrates did not respond consistently to humic application in either transect. The phenols that were more responsive to humic application or to droughtier conditions included p-coumaric acid and syringaldehyde, which are heavily involved in late-season maize lignification. In summary, humic product application further promoted root lignification, a natural response to drought. Yet under non-drought conditions it promoted root carbohydrate production. Carbohydrate production might be the intrinsic plant response to humic product application in stress-free conditions. These results indicate complex interactions in field conditions between plant biochemistry, environmental signals, and the humic product.
Collapse
Affiliation(s)
- D. C. Olk
- U.S. Department of Agriculture – Agricultural Research Service, National Laboratory for Agriculture and the Environment, Ames, IA, United States
| | - D. L. Dinnes
- U.S. Department of Agriculture – Agricultural Research Service, National Laboratory for Agriculture and the Environment, Ames, IA, United States
| | - R. D. Hatfield
- U.S. Department of Agriculture – Agricultural Research Service, U.S. Dairy Forage Research Center, Madison, WI, United States
- Retired, Princeton, WI, United States
| | - J. R. Scoresby
- Minerals Technologies, Inc., New York, NY, United States
- Retired, Homedale, ID, United States
| | | |
Collapse
|