1
|
Pala B, Tocci G, Nardoianni G, Barbato E, Amedei A. Gut Microbiome and Carotid Artery Intima-Media Thickness: A Narrative Review of the Current Scenario. Diagnostics (Basel) 2024; 14:2463. [PMID: 39594129 PMCID: PMC11592993 DOI: 10.3390/diagnostics14222463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/02/2024] [Accepted: 11/03/2024] [Indexed: 11/28/2024] Open
Abstract
Up to the last update, the gut microbiome (GM) had been associated with a different physiologic host process, including those affecting cardiovascular health. The carotid intima-media thickness (IMT) is an indicator of atherosclerosis and cardiovascular risk. The GM influence on atherosclerosis progression has garnered growing attention in recent years but the consensus in subclinical atherosclerosis remains elusive. The aim of this narrative review is to investigate the connection between the GM and carotid IMT, encompassing mechanisms like the microbiome impact on metabolite production, and systemic inflammation, and its effects on endothelial function. The literature analysis revealed that the GM appears to exert an influence on carotid IMT development, likely through mechanisms involving metabolites' production, systemic inflammation, and endothelial function modulation. Additional research, however, is needed to finely elucidate the relationship between the GM and atherosclerosis. Specifically, more extensive studies are required to pinpoint individuals at the highest risk of developing atherosclerosis based on their GM composition. This will facilitate the enhancement and optimization of cardiovascular disease prevention strategies and enable the treatments' customization for each patient. Further investigations are required to refine patient outcomes in the context of probiotics and other interventions aimed at improving microbiome composition and function.
Collapse
Affiliation(s)
- Barbara Pala
- Division of Cardiology, Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, University of Rome Sapienza, 00189 Rome, Italy; (G.T.); (G.N.); (E.B.)
| | - Giuliano Tocci
- Division of Cardiology, Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, University of Rome Sapienza, 00189 Rome, Italy; (G.T.); (G.N.); (E.B.)
| | - Giulia Nardoianni
- Division of Cardiology, Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, University of Rome Sapienza, 00189 Rome, Italy; (G.T.); (G.N.); (E.B.)
| | - Emanuele Barbato
- Division of Cardiology, Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, University of Rome Sapienza, 00189 Rome, Italy; (G.T.); (G.N.); (E.B.)
| | - Amedeo Amedei
- SOD of Interdisciplinary Internal Medicine, Azienda Ospedaliera Universitaria Careggi (AOUC), 50134 Florence, Italy
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), 50139 Florence, Italy
| |
Collapse
|
2
|
Kolesova EP, Chernyavsky MA, Vanyurkin AG, Verkhovskaya EV, Zaykova EK, Kalinina OV, Sitkin SI, Maslyansky AL, Kvan VV, Vasilyeva EY, Yakovlev AN, Babenko AY, Konradi AO, Shlyakhto EV. Features of the atherosclerotic plaque microbiome in patients after carotid endarterectomy. RUSSIAN JOURNAL OF CARDIOLOGY 2024; 29:6145. [DOI: 10.15829/1560-4071-2024-6145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/28/2025]
Abstract
Aim. To study the microbiome of atherosclerotic plaque biopsies in patients who underwent carotid endarterectomy (CEA).Material and methods. In this study, the microbiota profile of 76 atherosclerotic plaque samples obtained during CEA was analyzed using high-throughput sequencing of 16S rRNA V4 region. The proportion of patients without restenosis included in the study was 20%. The median follow-up of patients was 1,9 years (range, 1,4-2,25).Results. Taxonomic analysis revealed that the plaque microbiome is characterized by a wide diversity of gram-negative bacteria, including bacteria that are widespread in the environment. Bacteria most represented in plaques belong to four following families: Caulobacteraceae, Rhizobiaceae, Sphingobacteriaceae and Weeksellaceae. Linear discriminant analysis Effect Size (LEfSe) revealed a significantly higher representation of the microbial marker OTU_21, belonging to the Sphingomonadaceae family, in the atherosclerotic plaque microbiome of patients with ≥50% restenosis and Cloacibacterium (OTU_67), belonging to the Weeksellaceae family, in patients with >70% restenosis.Conclusion. The obtained data emphasize the importance of studying the atherosclerotic plaque microbiome and suggest that microorganisms of various origins, including those that have not previously been considered as risk factors, can play a pathogenetic role in both atherogenesis and restenosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - A. L. Maslyansky
- Almazov National Medical Research Center; St. Petersburg State University
| | - V. V. Kvan
- Almazov National Medical Research Center
| | | | | | | | | | | |
Collapse
|
3
|
Zhao Z, Zhang X, Zhao W, Wang J, Peng Y, Liu X, Liu N, Liu Q. Effect of chronic alcohol consumption on oral microbiota in rats with periodontitis. PeerJ 2024; 12:e17795. [PMID: 39148678 PMCID: PMC11326440 DOI: 10.7717/peerj.17795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/02/2024] [Indexed: 08/17/2024] Open
Abstract
Background The imbalance of oral microbiota can contribute to various oral disorders and potentially impact general health. Chronic alcohol consumption beyond a certain threshold has been implicated in influencing both the onset and progression of periodontitis. However, the mechanism by which chronic alcohol consumption affects periodontitis and its association with changes in the oral microbial community remains unclear. Objective This study used 16S rRNA gene amplicon sequencing to examine the dynamic changes in the oral microbial community of rats with periodontitis influenced by chronic alcohol consumption. Methods Twenty-four male Wistar rats were randomly allocated to either a periodontitis (P) or periodontitis + alcohol (PA) group. The PA group had unrestricted access to alcohol for 10 weeks, while the P group had access to water only. Four weeks later, both groups developed periodontitis. After 10 weeks, serum levels of alanine aminotransferase and aspartate aminotransferase in the rats' serum were measured. The oral swabs were obtained from rats, and 16S rRNA gene sequencing was conducted. Alveolar bone status was assessed using hematoxylin and eosin staining and micro-computed tomography. Results Rats in the PA group exhibited more severe periodontal tissue damage compared to those in the periodontitis group. Although oral microbial diversity remained stable, the relative abundance of certain microbial communities differed significantly between the two groups. Actinobacteriota and Desulfobacterota were more prevalent at the phylum level in the PA group. At the genus level, Cutibacterium, Tissierella, Romboutsia, Actinomyces, Lawsonella, Anaerococcus, and Clostridium_sensu_stricto_1 were significantly more abundant in the PA group, while Haemophilus was significantly less abundant. Additionally, functional prediction using Tax4Fun revealed a significant enrichment of carbohydrate metabolism in the PA group. Conclusion Chronic alcohol consumption exacerbated periodontitis in rats and influenced the composition and functional characteristics of their oral microbiota, as indicated by 16S rRNA gene sequencing results. These microbial alterations may contribute to the exacerbation of periodontitis in rats due to chronic alcohol consumption.
Collapse
Affiliation(s)
- Zirui Zhao
- Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiao Zhang
- Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Wanqing Zhao
- Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jianing Wang
- Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yanhui Peng
- Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xuanning Liu
- Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Na Liu
- Department of Preventive Dentistry, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Qing Liu
- Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
4
|
Sato A, Arai S, Sumi K, Fukamachi H, Miyake S, Ozawa M, Myers M, Maruoka Y, Shimizu K, Mizutani T, Kuwata H. Metagenomic Analysis of Bacterial Microflora in Dental and Atherosclerotic Plaques of Patients With Internal Carotid Artery Stenosis. CLINICAL MEDICINE INSIGHTS-CARDIOLOGY 2024; 18:11795468231225852. [PMID: 38328472 PMCID: PMC10848802 DOI: 10.1177/11795468231225852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 12/22/2023] [Indexed: 02/09/2024]
Abstract
Background Internal carotid artery stenosis is primarily attributed to atherosclerosis in the carotid artery bifurcation. Previous studies have detected oral bacteria in atherosclerotic lesions, suggesting an association between oral bacteria and atherosclerosis. In this study, we compared the bacterial flora of the atherosclerotic plaque in the carotid artery and dental plaque of patients with internal carotid artery stenosis using 16S ribosomal RNA (16S rRNA) metagenomic sequencing. Methods Fifty-four patients who underwent internal carotid endarterectomy for internal carotid artery stenosis at the Showa University Hospital between April 2016 and February 2018 were included. Polymerase chain reaction targeting the 16S rRNA gene detected bacterial DNA in the carotid plaques of 11 cases, of which only 5 could be further analyzed. Thereafter, DNA extracted from the carotid and oral plaques of these 5 cases were analyzed using metagenomic sequencing targeting 16S rRNA. In addition, their general condition and oral conditions were evaluated. The patients were classified into symptomatic and asymptomatic groups based on the presence or absence of symptoms of transient ischemic attack, and their bacterial flora was evaluated. Results The results demonstrated that the microflora of carotid plaques (n = 5) contained bacterial species from 55 families and 78 genera. In addition, 86.5% of the bacteria detected in the carotid plaques were also detected in oral plaques. Cariogenic and periodontopathic bacteria accounted for 27.7% and 4.7% of the bacteria in the carotid plaques, respectively. Conclusions These results suggest that oral bacteria are directly or indirectly involved in the pathogenesis of atherosclerosis. More extensive studies of oral commensal bacteria detected in extra-oral lesions are warranted to comprehensively investigate the role of oral bacteria in the pathogenesis of systemic diseases.
Collapse
Affiliation(s)
- Ayako Sato
- Department of Special Needs Dentistry, Division of Community-Based Comprehensive Dentistry, Showa University, Ohta-ku, Tokyo, Japan
- Department of Oral Microbiology and Immunology, School of Dentistry, Showa University, Shinagawa-Ku, Tokyo, Japan
| | - Shintaro Arai
- Department of Neurosurgery, School of Medicine, Showa University, Shinagawa-Ku, Tokyo, Japan
| | - Kenji Sumi
- Department of Neurosurgery, School of Medicine, Showa University, Shinagawa-Ku, Tokyo, Japan
| | - Haruka Fukamachi
- Department of Oral Microbiology and Immunology, School of Dentistry, Showa University, Shinagawa-Ku, Tokyo, Japan
| | - Satoko Miyake
- Department of Special Needs Dentistry, Division of Community-Based Comprehensive Dentistry, Showa University, Ohta-ku, Tokyo, Japan
| | - Manami Ozawa
- Department of Advanced Oral Surgery, Yokohama Clinic, Kanagawa Dental University, Yokohama, Kanagawa, Japan
| | - Mie Myers
- Department of Special Needs Dentistry, Division of Community-Based Comprehensive Dentistry, Showa University, Ohta-ku, Tokyo, Japan
| | - Yasubumi Maruoka
- Department of Special Needs Dentistry, Division of Community-Based Comprehensive Dentistry, Showa University, Ohta-ku, Tokyo, Japan
- Department of Oral and Maxillofacial Surgery, Totsuka Kyouritsu Daini Hospital, Yokohama-shi, Kanagawa, Japan
| | - Katsuyoshi Shimizu
- Department of Neurosurgery, School of Medicine, Showa University, Shinagawa-Ku, Tokyo, Japan
| | - Tohru Mizutani
- Department of Neurosurgery, School of Medicine, Showa University, Shinagawa-Ku, Tokyo, Japan
| | - Hirotaka Kuwata
- Department of Oral Microbiology and Immunology, School of Dentistry, Showa University, Shinagawa-Ku, Tokyo, Japan
| |
Collapse
|
5
|
Li Z, Fu R, Huang X, Wen X, Zhang L. A decade of progress: bibliometric analysis of trends and hotspots in oral microbiome research (2013-2022). Front Cell Infect Microbiol 2023; 13:1195127. [PMID: 37249977 PMCID: PMC10213461 DOI: 10.3389/fcimb.2023.1195127] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 04/26/2023] [Indexed: 05/31/2023] Open
Abstract
Background Over the past decade, a plethora of studies have delved into the oral microbiome. Our objective was to evaluate the trends in oral microbiome research employing a quantitative approach. Materials and methods We extracted clinical studies on the oral microbiome published between 2013 and 2022 from the Web of Science database, yielding 3024 articles. The assembled literature was visually scrutinized using VOSviewer 1.6.18, Citespace 6.1.6, Pajek, Scimago Graphica, and other specialized software to assess authors, institutions, countries, journals, co-cited literature, keywords, genes, and diseases. Results Our analysis identified a total of 3024 articles. The volume and rate of annual publications steadily increased, with research interest in the oral microbiome progressively intensifying. The United States, China, and the UK contributed the highest number of publications. Growth rates of publications varied among countries over time. The Forsyth Institute emerged as the most collaborative institution, boasting the highest number of relevant papers (135) and securing the top rank, followed by Sichuan University and Harvard University. Paster Bruce J, Zhou Xuedong, and He Xuesong were pioneers in the field of oral microbiome research. This analysis demonstrates that the homeostatic balance of the oral microbiome, advanced microbial sequencing technology, connections with gut microbiota, and tumorigenesis, including oral cancer, have become emerging topics in the oral microbiome field. Conclusions This study delineated a comprehensive landscape of hotspots and frontiers in oral microbiome research, thus facilitating the identification of interdisciplinary advancements. We sincerely hope that our bibliometric analysis will enable researchers to leverage the oral microbiome to ultimately improve human oral health.
Collapse
Affiliation(s)
- Zhengrui Li
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
- Shanghai Center of Head and Neck Oncology Clinical and Translational Science, Shanghai, China
| | - Rao Fu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
- Shanghai Center of Head and Neck Oncology Clinical and Translational Science, Shanghai, China
| | - Xufeng Huang
- Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Xutao Wen
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
- Shanghai Center of Head and Neck Oncology Clinical and Translational Science, Shanghai, China
| | - Ling Zhang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
- Shanghai Center of Head and Neck Oncology Clinical and Translational Science, Shanghai, China
| |
Collapse
|
6
|
Periodontopathic Microbiota and Atherosclerosis: Roles of TLR-Mediated Inflammation Response. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9611362. [PMID: 35295717 PMCID: PMC8920700 DOI: 10.1155/2022/9611362] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 02/22/2022] [Indexed: 02/06/2023]
Abstract
Atherosclerosis is a chronic inflammatory disease with a high prevalence worldwide, contributing to a series of adverse cardiovascular and cerebrovascular diseases. Periodontal disease induced by pathogenic periodontal microbiota has been well established as an independent factor of atherosclerosis. Periodontal microorganisms have been detected in atherosclerotic plaques. The high-risk microbiota dwelling in the subgingival pocket can stimulate local and systematic host immune responses and inflammatory cascade reactions through various signaling pathways, resulting in the development and progression of atherosclerosis. One often-discussed pathway is the Toll-like receptor-nuclear factor-κB (TLR-NF-κB) signaling pathway that plays a central role in the transduction of inflammatory mediators and the release of proinflammatory cytokines. This narrative review is aimed at summarizing and updating the latest literature on the association between periodontopathic microbiota and atherosclerosis and providing possible therapeutic ideas for clinicians regarding atherosclerosis prevention and treatment.
Collapse
|
7
|
Corredor Z, Suarez-Molina A, Fong C, Cifuentes-C L, Guauque-Olarte S. Presence of periodontal pathogenic bacteria in blood of patients with coronary artery disease. Sci Rep 2022; 12:1241. [PMID: 35075206 PMCID: PMC8786953 DOI: 10.1038/s41598-022-05337-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/04/2022] [Indexed: 02/06/2023] Open
Abstract
It has been hypothesised that oral bacteria can migrate, through the blood, from the mouth to the arterial plaques, thus exacerbating atherosclerosis. This study compared bacteria present in the peripheral blood of individuals with and without coronary artery disease (CAD). RNA sequences obtained from blood were downloaded from GEO (GSE58150). Eight patients with coronary artery calcification (CAC) scoring > 500 and eight healthy individuals were analysed. After conducting quality control, the sequences were aligned to the hg38 reference genome using Hisat2. Bacterial taxa were analysed by inputting the unmapped sequences into Kraken. Ecological indices were calculated using Vegan. The package DESeq2 was used to compare the counts of bacteria per standard rank between groups. A total of 51 species were found only in patients with CAD and 41 were exclusively present in healthy individuals. The counts of one phylum, one class, three orders, two families and one genus were significantly different between the analysed groups (p < 0.00032, FDR < 10%), including the orders Cardiobacteriales, Corynebacteriales and Fusobacteriales. Twenty-three bacterial species belonging to the subgingival plaque bacterial complexes were also identified in the blood of individuals from both the groups; Fusobacterium nucleatum was significantly less frequent in patients with CAD (p = 0.0012, FDR = 4.8%). Furthermore, the frequency of another 11 bacteria differed significantly among patients with CAD than that among healthy individuals (p < 0.0030, FDR < 10%). These bacteria have not been previously reported in patients with atherosclerosis and periodontitis. The presence of members of the subgingival plaque bacterial complexes in the blood of patients with CAC supports the hypothesis that the periodontopathogens can be disseminated through the blood flow to other body parts where they may enhance inflammatory processes that can lead to the development or exacerbation of atherosclerosis.
Collapse
Affiliation(s)
- Zuray Corredor
- Faculty of Dentistry, Universidad Cooperativa de Colombia Campus Pasto, Pasto, Colombia
| | | | - Cristian Fong
- Faculty of Medicine, Universidad Cooperativa de Colombia Campus Santa Marta, Santa Marta, Colombia
| | - Laura Cifuentes-C
- Faculty of Dentistry, Universidad Cooperativa de Colombia Campus Pasto, Pasto, Colombia
| | - Sandra Guauque-Olarte
- GIOM Group, Faculty of Dentistry, Universidad Cooperativa de Colombia Campus Envigado, Cra. 47 No. 37 sur 18, Envigado, Antioquia, Colombia.
| |
Collapse
|