1
|
Schwartzová V, Laputková G, Talian I, Marcin M, Schwartzová Z, Glaba D. Insights into Medication-Induced Osteonecrosis of the Jaw Through the Application of Salivary Proteomics and Bioinformatics. Int J Mol Sci 2024; 25:12405. [PMID: 39596473 PMCID: PMC11594355 DOI: 10.3390/ijms252212405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Long-term treatment with bisphosphonates is accompanied by an increased risk of medication-related osteonecrosis of the jaw (MRONJ). Currently, no clinically useful biomarkers for the predictive diagnosis of MRONJ are available. To investigate the potential key proteins involved in the pathogenesis of MRONJ, a proteomic LC-MS/MS analysis of saliva was performed. Differentially expressed proteins (DEPs) were analyzed using BiNGO, ClueGO, cytoHubba, MCODE, KEGG, and ReactomeFI software packages using Cytoscape platforms. In total, 1545 DEPs were identified, including 43 up- and 11 down-regulated with a 1.5-fold cut-off value and adj. p-value < 0.05. The analysis provided a panel of hub genes, including APOA2, APOB, APOC2, APOC3, APOE, APOM, C4B, C4BPA, C9, FGG, GC, HP, HRG, LPA, SAA2-SAA4, and SERPIND1. The most prevalent terms in GO of the biological process were macromolecular complex remodeling, protein-lipid complex remodeling, and plasma lipoprotein particle remodeling. DEPs were mainly involved in signaling pathways associated with lipoproteins, the innate immune system, complement, and coagulation cascades. The current investigation advanced our knowledge of the molecular mechanisms underlying MRONJ. In particular, the research identified the principal salivary proteins that are implicated in the onset and progression of this condition.
Collapse
Affiliation(s)
- Vladimíra Schwartzová
- Clinic of Stomatology and Maxillofacial Surgery, Faculty of Medicine, University of P. J. Šafárik and Louis Pasteur University Hospital, 041 90 Košice, Slovakia; (V.S.); (Z.S.)
| | - Galina Laputková
- Department of Medical and Clinical Biophysics, Faculty of Medicine, University of P. J. Šafárik, 040 11 Košice, Slovakia; (I.T.); (M.M.)
| | - Ivan Talian
- Department of Medical and Clinical Biophysics, Faculty of Medicine, University of P. J. Šafárik, 040 11 Košice, Slovakia; (I.T.); (M.M.)
| | - Miroslav Marcin
- Department of Medical and Clinical Biophysics, Faculty of Medicine, University of P. J. Šafárik, 040 11 Košice, Slovakia; (I.T.); (M.M.)
| | - Zuzana Schwartzová
- Clinic of Stomatology and Maxillofacial Surgery, Faculty of Medicine, University of P. J. Šafárik and Louis Pasteur University Hospital, 041 90 Košice, Slovakia; (V.S.); (Z.S.)
| | - Dominik Glaba
- Faculty of Medicine, University of P. J. Šafárik, 041 90 Košice, Slovakia;
| |
Collapse
|
2
|
Al-Ajalein AA, Ibrahim N‘I, Fauzi MB, Mokhtar SA, Naina Mohamed I, Shuid AN, Mohamed N. Evaluating the Anti-Osteoporotic Potential of Mediterranean Medicinal Plants: A Review of Current Evidence. Pharmaceuticals (Basel) 2024; 17:1341. [PMID: 39458982 PMCID: PMC11510337 DOI: 10.3390/ph17101341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Bones are biological reservoirs for minerals and cells, offering protection to the other organs and contributing to the structural form of the body. Osteoporosis is a prevalent bone condition that significantly impacts people's quality of life. Treatments utilizing natural products and medicinal plants have gained important attention in the management of osteoporosis and its associated implications, such as osteoporotic fractures. Even though thousands of plants grow in the Mediterranean region, the use of medicinal plants as an alternative therapy for osteoporosis is still limited. Methods: This article provides a comprehensive overview of seven Mediterranean medicinal plants that are used in osteoporosis and osteoporotic fractures in in vitro, in vivo, and clinical trials. The mechanism of action of the medicinal plants and their bioactive compounds against diseases are also briefly discussed. Results: The findings clearly indicate the ability of the seven medicinal plants (Ammi majus, Brassica oleracea, Ceratonia siliqua L., Foeniculum vulgare, Glycyrrhiza glabra, Salvia officinalis, and Silybum marianum) as anti-osteoporosis agents. Xanthotoxin, polyphenols, liquiritin, formononetin, silymarin, and silibinin/silybin were the main bioactive compounds that contributed to the action against osteoporosis and osteoporotic fractures. Conclusions: In this review, the Mediterranean medicinal plants prove their ability as an alternative agent for osteoporosis and osteoporotic fractures instead of conventional synthetic therapies. Thus, this can encourage researchers to delve deeper into this field and develop medicinal-plant-based drugs.
Collapse
Affiliation(s)
- Alhareth Abdulraheem Al-Ajalein
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (A.A.A.-A.); (N.‘I.I.); (I.N.M.)
| | - Nurul ‘Izzah Ibrahim
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (A.A.A.-A.); (N.‘I.I.); (I.N.M.)
| | - Mh Busra Fauzi
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia;
- Advance Bioactive Materials-Cells (Adv-BioMaC) UKM Research Group, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Sabarul Afian Mokhtar
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia;
| | - Isa Naina Mohamed
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (A.A.A.-A.); (N.‘I.I.); (I.N.M.)
| | - Ahmad Nazrun Shuid
- Department of Pharmacology, Faculty of Medicine, Universiti Teknologi Mara (UITM), Jalan Hospital, Sungai Buloh 47000, Malaysia;
| | - Norazlina Mohamed
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (A.A.A.-A.); (N.‘I.I.); (I.N.M.)
| |
Collapse
|
3
|
Laputková G, Talian I, Schwartzová V. Medication-Related Osteonecrosis of the Jaw: A Systematic Review and a Bioinformatic Analysis. Int J Mol Sci 2023; 24:16745. [PMID: 38069068 PMCID: PMC10706386 DOI: 10.3390/ijms242316745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/23/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
The objective was to evaluate the current evidence regarding the etiology of medication-related osteonecrosis of the jaw (MRONJ). This study systematically reviewed the literature by searching PubMed, Web of Science, and ProQuest databases for genes, proteins, and microRNAs associated with MRONJ from the earliest records through April 2023. Conference abstracts, letters, review articles, non-human studies, and non-English publications were excluded. Twelve studies meeting the inclusion criteria involving exposure of human oral mucosa, blood, serum, saliva, or adjacent bone or periodontium to anti-resorptive or anti-angiogenic agents were analyzed. The Cochrane Collaboration risk assessment tool was used to assess the quality of the studies. A total of 824 differentially expressed genes/proteins (DEGs) and 22 microRNAs were extracted for further bioinformatic analysis using Cytoscape, STRING, BiNGO, cytoHubba, MCODE, and ReactomeFI software packages and web-based platforms: DIANA mirPath, OmicsNet, and miRNet tools. The analysis yielded an interactome consisting of 17 hub genes and hsa-mir-16-1, hsa-mir-21, hsa-mir-23a, hsa-mir-145, hsa-mir-186, hsa-mir-221, and hsa-mir-424. A dominance of cytokine pathways was observed in both the cluster of hub DEGs and the interactome of hub genes with dysregulated miRNAs. In conclusion, a panel of genes, miRNAs, and related pathways were found, which is a step toward understanding the complexity of the disease.
Collapse
Affiliation(s)
- Galina Laputková
- Department of Medical and Clinical Biophysics, Faculty of Medicine, University of P. J. Šafárik, Trieda SNP 1, 040 11 Košice, Slovakia;
| | - Ivan Talian
- Department of Medical and Clinical Biophysics, Faculty of Medicine, University of P. J. Šafárik, Trieda SNP 1, 040 11 Košice, Slovakia;
| | - Vladimíra Schwartzová
- Clinic of Stomatology and Maxillofacial Surgery, Faculty of Medicine, University of P. J. Šafárik and Louis Pasteur University Hospital, 041 90 Košice, Slovakia;
| |
Collapse
|
4
|
Guirguis RH, Tan LP, Hicks RM, Hasan A, Duong TD, Hu X, Hng JYS, Hadi MH, Owuama HC, Matthyssen T, McCullough M, Canfora F, Paolini R, Celentano A. In Vitro Cytotoxicity of Antiresorptive and Antiangiogenic Compounds on Oral Tissues Contributing to MRONJ: Systematic Review. Biomolecules 2023; 13:973. [PMID: 37371553 DOI: 10.3390/biom13060973] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/04/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Invasive dental treatment in patients exposed to antiresorptive and antiangiogenic drugs can cause medication-related osteonecrosis of the jaw (MRONJ). Currently, the exact pathogenesis of this disease is unclear. METHODS In March 2022, Medline (Ovid), Embase (Ovid), Scopus, and Web of Science were screened to identify eligible in vitro studies investigating the effects of antiresorptive and antiangiogenic compounds on orally derived cells. RESULTS Fifty-nine articles met the inclusion criteria. Bisphosphonates were used in 57 studies, denosumab in two, and sunitinib and bevacizumab in one. Zoledronate was the most commonly used nitrogen-containing bisphosphonate. The only non-nitrogen-containing bisphosphonate studied was clodronate. The most frequently tested tissues were gingival fibroblasts, oral keratinocytes, and alveolar osteoblasts. These drugs caused a decrease in cell proliferation, viability, and migration. CONCLUSIONS Antiresorptive and antiangiogenic drugs displayed cytotoxic effects in a dose and time-dependent manner. Additional research is required to further elucidate the pathways of MRONJ.
Collapse
Affiliation(s)
- Robert H Guirguis
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia
| | - Leonard P Tan
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia
| | - Rebecca M Hicks
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia
| | - Aniqa Hasan
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia
| | - Tina D Duong
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia
| | - Xia Hu
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia
| | - Jordan Y S Hng
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia
| | - Mohammad H Hadi
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia
| | - Henry C Owuama
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia
| | - Tamara Matthyssen
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia
| | - Michael McCullough
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia
| | - Federica Canfora
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, 80131 Naples, Italy
| | - Rita Paolini
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia
| | - Antonio Celentano
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia
| |
Collapse
|
5
|
Abuohashish H, Alamri A, Shahin S, Almazrou D, Alkhamis T, Omar O. Bevacizumab, a vascular endothelial growth factor inhibitor, promotes orthodontic tooth movement in an experimental rat model. Heliyon 2023; 9:e16217. [PMID: 37215827 PMCID: PMC10199243 DOI: 10.1016/j.heliyon.2023.e16217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/05/2023] [Accepted: 05/10/2023] [Indexed: 05/24/2023] Open
Abstract
Objective This study aimed to evaluate the impact of bevacizumab on orthodontic tooth movement (OTM) in Wistar rats. Materials and methods The OTM model was constructed by placing an orthodontic coil spring between the maxillary first molar and anterior tooth. Bevacizumab (Avastin®; 10 mg/kg twice per week) was started one week before the OTM and continued for 3 weeks. After 1 and 2 weeks, OTM distance and anterior tooth mobility were measured. Thereafter, the maxilla was dissected for micro-CT microarchitectural analysis, followed by histological analysis, and tartrate-resistant acid phosphatase (TRAP) staining. Moreover, the distributions of collagen fibers type-I and -III (Col-I and Col-III) were evaluated using Picro-Sirius red staining. Results Orthodontic force prompted bone resorption and formation on the pressure and tension sides, respectively. Bevacizumab therapy resulted in a 42% increase of OTM, particularly after 2 weeks. Furthermore, bevacizumab disturbed the morphometric structure at both pressure and tension sites. The histological evaluation indicated about 35-44% fewer osteoblasts in the bevacizumab group, especially at the tension side, whereas the proportion of TRAP-positive osteoclasts at the pressure side was 34-37% higher than the control. The mature Col-I was reduced at the tension site by 33%, whereas the Col-III/Col-I ratio was enhanced by 20-44% at pressure and tension sites, after 2 weeks, in the bevacizumab group. Conclusion Anti-vascular bevacizumab therapy accentuates OTM in rat model, possibly through the enhancement of bone resorption, at the pressure side, and the reduction of bone formation, at the tension side as well as dysregulation of collagen fibers distribution.
Collapse
Affiliation(s)
- Hatem Abuohashish
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Abdulaziz Alamri
- Department of Preventive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Suliman Shahin
- Department of Preventive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Dalal Almazrou
- Department of Preventive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Taleb Alkhamis
- Department of Environmental Health Research, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Omar Omar
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| |
Collapse
|