1
|
Yu J, Yu M, Song T, Cao H, Pan X, Yong M, Qi Z, Du Y, Zhang R, Yin X, Liu Y. A Homeobox Transcription Factor UvHOX2 Regulates Chlamydospore Formation, Conidiogenesis, and Pathogenicity in Ustilaginoidea virens. Front Microbiol 2019; 10:1071. [PMID: 31281290 PMCID: PMC6596325 DOI: 10.3389/fmicb.2019.01071] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 04/29/2019] [Indexed: 12/21/2022] Open
Abstract
Rice false smut fungus (teleomorph: Villosiclava virens; anamorph: Ustilaginoidea virens) can generate chlamydospores and survive winter under field conditions. The chlamydospore is considered as an important infection source of the disease. However, little is known about the regulatory mechanism of the chlamydospore production. In this study, we identified a defective homeobox transcription factor (designated as UvHOX2) gene in a U. virens random insertional mutant B-766 that could not form chlamydospores. To confirm the regulatory function of UvHOX2, an Agrobacterium tumefaciens mediated transformation- and CRISPR/Cas9- based targeted gene replacement method was developed. The UvHox2 deletion mutants completely failed to produce chlamydospores, showed reduced conidia production and decreased virulence, and was hyper-sensitive to oxidative, osmotic, and cell wall stresses. We confirmed that UvHOX2 is located in the nuclei of U. virens, and the expression of UvHox2 was the strongest during the early stage of chlamydospore and conidium formation. Global transcription pattern of UvHOX2 was also determined by RNA-seq in this study, and several genes that might be down-stream of UvHOX2 regulation were identified. The results will better our understanding of the molecular mechanism of chlamydospore formation in U. virens as a model fungus.
Collapse
Affiliation(s)
- Junjie Yu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Mina Yu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Tianqiao Song
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Huijuan Cao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xiayan Pan
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Mingli Yong
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Zhongqiang Qi
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yan Du
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Rongsheng Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xiaole Yin
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yongfeng Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,School of the Environment and Safety Engineering, Jiangsu University, Zhengjiang, China
| |
Collapse
|
2
|
Guo W, Gao Y, Yu Z, Xiao Y, Zhang Z, Zhang H. The adenylate cyclase UvAc1 and phosphodiesterase UvPdeH control the intracellular cAMP level, development, and pathogenicity of the rice false smut fungus Ustilaginoidea virens. Fungal Genet Biol 2019; 129:65-73. [PMID: 31063805 DOI: 10.1016/j.fgb.2019.04.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/15/2019] [Accepted: 04/29/2019] [Indexed: 12/15/2022]
Abstract
The cyclic adenosine monophosphate (cAMP) signaling pathway plays pleiotropic roles in regulating development and pathogenicity in eukaryotes. cAMP is a second messenger that is important for the activation of downstream pathways. The intracellular cAMP level is modulated mainly by its biosynthesis, which is catalyzed by adenylate cyclases (ACs), and hydrolysis by phosphodiesterases (PDEs). Here, we identified the AC UvAc1 and the cAMP high-affinity PDE UvPdeH in the rice false smut fungus Ustilaginoidea virens; these enzymes are homologs of MoMac1 and MoPdeH in Magnaporthe oryzae (rice blast fungus). A heterogenous complementation assay revealed that UvAc1 and UvPdeH partially or completely rescued the defects in ΔMomac1 and ΔMopdeH mutant M. oryzae. UvAc1 and UvPdeH play important roles in the development and virulence of U. virens. ΔUvac1 and ΔUvpdeH mutant fungi showed defects in conidial production, morphology, and germination; reduced toxicity against germinating rice seeds; and reduced virulence on rice panicles. ΔUvac1 exhibited increased sensitivity to Calcofluor White (CFW) and sodium chloride (NaCl), and decreased sensitivity to Congo Red (CR), while ΔUvpdeH showed increased sensitivity to sodium dodecyl sulfate, CR, sorbitol, and hydrogen peroxide, and decreased sensitivity to CFW and NaCl. High-performance liquid chromatography revealed that the intracellular cAMP level was significantly increased in ΔUvpdeH and decreased in ΔUvac1. Taken together, our results demonstrate that UvAc1 and UvPdeH are conservative components of the cAMP pathway that are important for conidiogenesis, stress responses, virulence, and regulation of the intracellular cAMP level in U. virens.
Collapse
Affiliation(s)
- Weiwen Guo
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Yixin Gao
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Zhaomeng Yu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Yuhan Xiao
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Haifeng Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China.
| |
Collapse
|
3
|
Davari A, Skinner M, Parker B. Cell electrofusion to improve efficacy and thermotolerance of the entomopathogenic fungus,
Beauveria bassiana. J Appl Microbiol 2018; 125:1482-1493. [DOI: 10.1111/jam.14031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/20/2018] [Accepted: 06/20/2018] [Indexed: 01/19/2023]
Affiliation(s)
- A. Davari
- Entomology Research Laboratory University of Vermont Burlington VT 05405‐0105 USA
| | - M. Skinner
- Entomology Research Laboratory University of Vermont Burlington VT 05405‐0105 USA
| | - B.L. Parker
- Entomology Research Laboratory University of Vermont Burlington VT 05405‐0105 USA
| |
Collapse
|
4
|
Fan J, Yang J, Wang Y, Li G, Li Y, Huang F, Wang W. Current understanding on Villosiclava virens, a unique flower-infecting fungus causing rice false smut disease. MOLECULAR PLANT PATHOLOGY 2016; 17:1321-1330. [PMID: 26720072 PMCID: PMC6638446 DOI: 10.1111/mpp.12362] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 12/25/2015] [Accepted: 12/27/2015] [Indexed: 05/13/2023]
Abstract
Villosiclava virens (Vv) is an ascomycete fungal pathogen that causes false smut disease in rice. Recent reports have revealed some interesting aspects of the enigmatic pathogen to address the question of why it specifically infects rice flowers and converts a grain into a false smut ball. Comparative and functional genomics have suggested specific adaptation of Vv in the colonization of rice flowers. Anatomical studies have disclosed that Vv specifically infects rice stamen filaments before heading and intercepts seed formation. In addition, Vv can occupy the whole inner space of a spikelet embracing all floral organs and activate the rice grain-filling network, presumably for nutrient acquisition to support the development of the false smut ball. This profile provides a general overview of the rice false smut pathogen, and summarizes advances in the Vv life cycle, genomics and genetics, and the molecular Vv-rice interaction. Current understandings of the Vv-rice pathosystem indicate that it is a unique and interesting system which can enrich the study of plant-pathogen interactions. Taxonomy: Ustilaginoidea virens is the anamorph form of the pathogen (Kingdom Fungi; Phylum Ascomycota; Class Ascomycetes; Subclass Incertae sedis; Order Incertae sedis; Family Incertae sedis; Genus Ustilaginoidea). The teleomorph form is Villosiclava virens (Kingdom Fungi; Phylum Ascomycota; Class Ascomycetes; Subclass Sordariomycetes; Order Hypocreales; Family Clavicipitaceae; Genus Villosiclava). Disease symptoms: The only visible symptom is the replacement of rice grains by ball-shaped fungal mycelia, namely false smut balls. When maturing, the false smut ball is covered with powdery chlamydospores, and the colour changes to yellowish, yellowish orange, green, olive green and, finally, to greenish black. Sclerotia are often formed on the false smut balls in autumn. Identification and detection: Vv conidia are round to elliptical, measuring 3-5 μm in diameter. Chlamydospores are ornamented with prominent irregularly curved spines, which are 200-500 nm in length. The sclerotia are black, horseshoe-shaped and irregular oblong or flat, ranging from 2 to 20 mm. Nested polymerase chain reaction (PCR) and quantitative PCR have been developed to specifically detect Vv presence in rice tissues and other biotic and abiotic samples in fields. Host range: Rice is the primary host for Vv. Natural infection by Vv has been found on several paddy field weeds, including Digitaria marginata, Panicum trypheron, Echinochloa crusgalli and Imperata cylindrica. However, the occurrence of infection in these potential alternative hosts is very rare. Life cycle: Vv infects rice spikelets at the late rice booting stage, and produces false smut balls covered with dark-green chlamydospores. Occasionally, sclerotia form on the surface of false smut balls in late autumn when the temperature fluctuates greatly between day and night. Both chlamydospores and sclerotia may serve as primary infection sources. Rainfall at the rice booting stage is a major environmental factor resulting in epidemics of rice false smut disease. Disease control: The use of fungicides is the major approach for the control of Vv. Several fungicides, such as cuproxat SC, copper oxychloride, tebuconazole, propiconazole, difenoconazole and validamycin, are often applied. However, the employment of resistant rice cultivars and genes has been limited, because of the poor understanding of rice resistance to Vv. Useful websites: Villosiclava virens genome sequence: http://www.ncbi.nlm.nih.gov/Traces/wgs/?val=JHTR01#contigs.
Collapse
Affiliation(s)
- Jing Fan
- Rice Research Institute & Key Laboratory for Major Crop DiseasesSichuan Agricultural UniversityChengdu611130China
| | - Juan Yang
- Rice Research Institute & Key Laboratory for Major Crop DiseasesSichuan Agricultural UniversityChengdu611130China
| | - Yu‐Qiu Wang
- Rice Research Institute & Key Laboratory for Major Crop DiseasesSichuan Agricultural UniversityChengdu611130China
| | - Guo‐Bang Li
- Rice Research Institute & Key Laboratory for Major Crop DiseasesSichuan Agricultural UniversityChengdu611130China
| | - Yan Li
- Rice Research Institute & Key Laboratory for Major Crop DiseasesSichuan Agricultural UniversityChengdu611130China
| | - Fu Huang
- Rice Research Institute & Key Laboratory for Major Crop DiseasesSichuan Agricultural UniversityChengdu611130China
- College of Agronomy & Institute of Agricultural EcologySichuan Agricultural UniversityChengdu611130China
| | - Wen‐Ming Wang
- Rice Research Institute & Key Laboratory for Major Crop DiseasesSichuan Agricultural UniversityChengdu611130China
| |
Collapse
|
5
|
UvHOG1 is important for hyphal growth and stress responses in the rice false smut fungus Ustilaginoidea virens. Sci Rep 2016; 6:24824. [PMID: 27095476 PMCID: PMC4837404 DOI: 10.1038/srep24824] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 04/06/2016] [Indexed: 11/23/2022] Open
Abstract
Rice false smut caused by Ustilaginoidea virens is one of the most important diseases of rice worldwide. Although its genome has been sequenced, to date there is no report on targeted gene deletion in U. virens and no molecular studies on genetic mechanisms regulating the infection processes of this destructive pathogen. In this study, we attempted to generate knockout mutants of the ortholog of yeast HOG1 MAP kinase gene in U. virens. One Uvhog1 deletion mutant was identified after screening over 600 hygromycin-resistant transformants generated by Agrobacterium tumefaciens mediated transformation. The Uvhog1 mutant was reduced in growth rate and conidiation but had increased sensitivities to SDS, Congo red, and hyperosmotic stress. Deletion of UvHOG1 resulted in reduced expression of the stress response-related genes UvATF1 and UvSKN7. In the Uvhog1 mutant, NaCl treatment failed to stimulate the accumulation of sorbitol and glycerol. In addition, the Uvhog1 mutant had reduced toxicity on shoot growth in rice seed germination assays. Overall, as the first report of targeted gene deletion mutant in U. virens, our results showed that UvHOG1 likely has conserved roles in regulating stress responses, hyphal growth, and possibly secondary metabolism.
Collapse
|
6
|
Yu M, Yu J, Hu J, Huang L, Wang Y, Yin X, Nie Y, Meng X, Wang W, Liu Y. Identification of pathogenicity-related genes in the rice pathogen Ustilaginoidea virens through random insertional mutagenesis. Fungal Genet Biol 2015; 76:10-9. [DOI: 10.1016/j.fgb.2015.01.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Revised: 12/31/2014] [Accepted: 01/16/2015] [Indexed: 10/24/2022]
|
7
|
Vela-Corcía D, Romero D, Torés JA, De Vicente A, Pérez-García A. Transient transformation of Podosphaera xanthii by electroporation of conidia. BMC Microbiol 2015. [PMID: 25651833 DOI: 10.1186/s12866-014-0338-338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023] Open
Abstract
BACKGROUND Powdery mildew diseases are a major phytosanitary issue causing important yield and economic losses in agronomic, horticultural and ornamental crops. Powdery mildew fungi are obligate biotrophic parasites unable to grow on culture media, a fact that has significantly limited their genetic manipulation. In this work, we report a protocol based on the electroporation of fungal conidia, for the transient transformation of Podosphaera fusca (synonym Podosphaera xanthii), the main causal agent of cucurbit powdery mildew. RESULTS To introduce DNA into P. xanthii conidia, we applied two square-wave pulses of 1.7 kV for 1 ms with an interval of 5 s. We tested these conditions with several plasmids bearing as selective markers hygromycin B resistance (hph), carbendazim resistance (TUB2) or GFP (gfp) under control of endogenous regulatory elements from Aspergillus nidulans, Neurospora crassa or P. xanthii to drive their expression. An in planta selection procedure using the MBC fungicide carbendazim permitted the propagation of transformants onto zucchini cotyledons and avoided the phytotoxicity associated with hygromycin B. CONCLUSION This is the first report on the transformation of P. xanthii and the transformation of powdery mildew fungi using electroporation. Although the transformants are transient, this represents a feasible method for the genetic manipulation of this important group of plant pathogens.
Collapse
Affiliation(s)
- David Vela-Corcía
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga - Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento de Microbiología, Universidad de Málaga, Bulevar Louis Pasteur 31 (Campus Universitario de Teatinos), 29071, Málaga, Spain.
| | - Diego Romero
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga - Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento de Microbiología, Universidad de Málaga, Bulevar Louis Pasteur 31 (Campus Universitario de Teatinos), 29071, Málaga, Spain.
| | - Juan Antonio Torés
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga - Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Estación Experimental "La Mayora", 29750 Algarrobo-Costa, Málaga, Spain.
| | - Antonio De Vicente
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga - Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento de Microbiología, Universidad de Málaga, Bulevar Louis Pasteur 31 (Campus Universitario de Teatinos), 29071, Málaga, Spain.
| | - Alejandro Pérez-García
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga - Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento de Microbiología, Universidad de Málaga, Bulevar Louis Pasteur 31 (Campus Universitario de Teatinos), 29071, Málaga, Spain.
| |
Collapse
|
8
|
Vela-Corcía D, Romero D, Torés JA, De Vicente A, Pérez-García A. Transient transformation of Podosphaera xanthii by electroporation of conidia. BMC Microbiol 2015; 15:20. [PMID: 25651833 PMCID: PMC4328038 DOI: 10.1186/s12866-014-0338-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 12/23/2014] [Indexed: 11/24/2022] Open
Abstract
Background Powdery mildew diseases are a major phytosanitary issue causing important yield and economic losses in agronomic, horticultural and ornamental crops. Powdery mildew fungi are obligate biotrophic parasites unable to grow on culture media, a fact that has significantly limited their genetic manipulation. In this work, we report a protocol based on the electroporation of fungal conidia, for the transient transformation of Podosphaera fusca (synonym Podosphaera xanthii), the main causal agent of cucurbit powdery mildew. Results To introduce DNA into P. xanthii conidia, we applied two square-wave pulses of 1.7 kV for 1 ms with an interval of 5 s. We tested these conditions with several plasmids bearing as selective markers hygromycin B resistance (hph), carbendazim resistance (TUB2) or GFP (gfp) under control of endogenous regulatory elements from Aspergillus nidulans, Neurospora crassa or P. xanthii to drive their expression. An in planta selection procedure using the MBC fungicide carbendazim permitted the propagation of transformants onto zucchini cotyledons and avoided the phytotoxicity associated with hygromycin B. Conclusion This is the first report on the transformation of P. xanthii and the transformation of powdery mildew fungi using electroporation. Although the transformants are transient, this represents a feasible method for the genetic manipulation of this important group of plant pathogens.
Collapse
Affiliation(s)
- David Vela-Corcía
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga - Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento de Microbiología, Universidad de Málaga, Bulevar Louis Pasteur 31 (Campus Universitario de Teatinos), 29071, Málaga, Spain.
| | - Diego Romero
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga - Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento de Microbiología, Universidad de Málaga, Bulevar Louis Pasteur 31 (Campus Universitario de Teatinos), 29071, Málaga, Spain.
| | - Juan Antonio Torés
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga - Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Estación Experimental "La Mayora", 29750 Algarrobo-Costa, Málaga, Spain.
| | - Antonio De Vicente
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga - Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento de Microbiología, Universidad de Málaga, Bulevar Louis Pasteur 31 (Campus Universitario de Teatinos), 29071, Málaga, Spain.
| | - Alejandro Pérez-García
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga - Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento de Microbiología, Universidad de Málaga, Bulevar Louis Pasteur 31 (Campus Universitario de Teatinos), 29071, Málaga, Spain.
| |
Collapse
|
9
|
De novo sequencing and transcriptome analysis of Ustilaginoidea virens by using Illumina paired-end sequencing and development of simple sequence repeat markers. Gene 2014; 547:202-10. [DOI: 10.1016/j.gene.2014.06.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 06/03/2014] [Accepted: 06/05/2014] [Indexed: 02/06/2023]
|
10
|
Wang X, Liu Q, Wang H, Luo CX, Wang G, Luo M. A BAC based physical map and genome survey of the rice false smut fungus Villosiclava virens. BMC Genomics 2013; 14:883. [PMID: 24341590 PMCID: PMC3878662 DOI: 10.1186/1471-2164-14-883] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Accepted: 12/04/2013] [Indexed: 01/08/2023] Open
Abstract
Background Rice false smut caused by Villosiclava virens is a devastating fungal disease that spreads in major rice-growing regions throughout the world. However, the genomic information for this fungal pathogen is limited and the pathogenic mechanism of this disease is still not clear. To facilitate genetic, molecular and genomic studies of this fungal pathogen, we constructed the first BAC-based physical map and performed the first genome survey for this species. Results High molecular weight genomic DNA was isolated from young mycelia of the Villosiclava virens strain UV-8b and a high-quality, large-insert and deep-coverage Bacterial Artificial Chromosome (BAC) library was constructed with the restriction enzyme HindIII. The BAC library consisted of 5,760 clones, which covers 22.7-fold of the UV-8b genome, with an average insert size of 140 kb and an empty clone rate of lower than 1%. BAC fingerprinting generated successful fingerprints for 2,290 BAC clones. Using the fingerprints, a whole genome-wide BAC physical map was constructed that contained 194 contigs (2,035 clones) spanning 51.2 Mb in physical length. Bidirectional-end sequencing of 4,512 BAC clones generated 6,560 high quality BAC end sequences (BESs), with a total length of 3,030,658 bp, representing 8.54% of the genome sequence. Analysis of the BESs revealed general genome information, including 51.52% GC content, 22.51% repetitive sequences, 376.12/Mb simple sequence repeat (SSR) density and approximately 36.01% coding regions. Sequence comparisons to other available fungal genome sequences through BESs showed high similarities to Metarhizium anisopliae, Trichoderma reesei, Nectria haematococca and Cordyceps militaris, which were generally in agreement with the 18S rRNA gene analysis results. Conclusion This study provides the first BAC-based physical map and genome information for the important rice fungal pathogen Villosiclava virens. The BAC clones, physical map and genome information will serve as fundamental resources to accelerate the genetic, molecular and genomic studies of this pathogen, including positional cloning, comparative genomic analysis and whole genome sequencing. The BAC library and physical map have been opened to researchers as public genomic resources (http://gresource.hzau.edu.cn/resource/resource.html).
Collapse
Affiliation(s)
| | | | | | | | | | - Meizhong Luo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China.
| |
Collapse
|
11
|
Fu R, Ding L, Zhu J, Li P, Zheng AP. Morphological structure of propagules and electrophoretic karyotype analysis of false smut Villosiclava virens in rice. J Microbiol 2012; 50:263-9. [DOI: 10.1007/s12275-012-1456-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 12/08/2011] [Indexed: 11/30/2022]
|
12
|
Morita A, Saitoh Y, Izumitsu K, Tanaka C. Molecular organization of the mating type (Mat) locus of Exserohilum monoceras (Setosphaeria monoceras), a bioherbicide agent for Echinochloa weeds. MYCOSCIENCE 2012. [DOI: 10.1007/s10267-011-0141-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|