1
|
Jupin-Delevaux É, Djahnine A, Talbot F, Richard A, Gouttard S, Mansuy A, Douek P, Si-Mohamed S, Boussel L. BERT-based natural language processing analysis of French CT reports: Application to the measurement of the positivity rate for pulmonary embolism. RESEARCH IN DIAGNOSTIC AND INTERVENTIONAL IMAGING 2023; 6:100027. [PMID: 39077547 PMCID: PMC11265488 DOI: 10.1016/j.redii.2023.100027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 03/15/2023] [Indexed: 07/31/2024]
Abstract
Rationale and objectives To develop a Natural Language Processing (NLP) method based on Bidirectional Encoder Representations from Transformers (BERT) adapted to French CT reports and to evaluate its performance to calculate the diagnostic yield of CT in patients with clinical suspicion of pulmonary embolism (PE). Materials and methods All the CT reports performed in our institution in 2019 (99,510 reports, training and validation dataset) and 2018 (94,559 reports, testing dataset) were included after anonymization. Two BERT-based NLP sentence classifiers were trained on 27.700, manually labeled, sentences from the training dataset. The first one aimed to classify the reports' sentences into three classes ("Non chest", "Healthy chest", and "Pathological chest" related sentences), the second one to classify the last class into eleven sub classes pathologies including "pulmonary embolism". F1-score was reported on the validation dataset. These NLP classifiers were then applied to requested CT reports for pulmonary embolism from the testing dataset. Sensitivity, specificity, and accuracy for detection of the presence of a pulmonary embolism were reported in comparison to human analysis of the reports. Results The F1-score for the 3-Classes and 11-SubClasses classifiers was 0.984 and 0.985, respectively. 4,042 examinations from the testing dataset were requested for pulmonary embolism of which 641 (15.8%) were positively evaluated by radiologists. The sensitivity, specificity, and accuracy of the NLP network for identifying pulmonary embolism in these reports were 98.2%, 99.3% and 99.1%, respectively. Conclusion BERT-based NLP sentences classifier enables the analysis of large databases of radiological reports to accurately determine the diagnostic yield of CT screening.
Collapse
Affiliation(s)
| | - Aissam Djahnine
- CREATIS, Univ Lyon, INSA‐Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1294, Lyon, France
- Philips Research France, Suresnes, France
| | | | | | - Sylvain Gouttard
- Radiology department, Hospices Civils de Lyon - HCL, Lyon, France
| | - Adeline Mansuy
- Radiology department, Hospices Civils de Lyon - HCL, Lyon, France
| | - Philippe Douek
- Radiology department, Hospices Civils de Lyon - HCL, Lyon, France
- CREATIS, Univ Lyon, INSA‐Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1294, Lyon, France
| | - Salim Si-Mohamed
- Radiology department, Hospices Civils de Lyon - HCL, Lyon, France
- CREATIS, Univ Lyon, INSA‐Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1294, Lyon, France
| | - Loïc Boussel
- Radiology department, Hospices Civils de Lyon - HCL, Lyon, France
- CREATIS, Univ Lyon, INSA‐Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1294, Lyon, France
| |
Collapse
|
2
|
Automated Detection of Radiology Reports that Require Follow-up Imaging Using Natural Language Processing Feature Engineering and Machine Learning Classification. J Digit Imaging 2021; 33:131-136. [PMID: 31482317 DOI: 10.1007/s10278-019-00271-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
While radiologists regularly issue follow-up recommendations, our preliminary research has shown that anywhere from 35 to 50% of patients who receive follow-up recommendations for findings of possible cancer on abdominopelvic imaging do not return for follow-up. As such, they remain at risk for adverse outcomes related to missed or delayed cancer diagnosis. In this study, we develop an algorithm to automatically detect free text radiology reports that have a follow-up recommendation using natural language processing (NLP) techniques and machine learning models. The data set used in this study consists of 6000 free text reports from the author's institution. NLP techniques are used to engineer 1500 features, which include the most informative unigrams, bigrams, and trigrams in the training corpus after performing tokenization and Porter stemming. On this data set, we train naive Bayes, decision tree, and maximum entropy models. The decision tree model, with an F1 score of 0.458 and accuracy of 0.862, outperforms both the naive Bayes (F1 score of 0.381) and maximum entropy (F1 score of 0.387) models. The models were analyzed to determine predictive features, with term frequency of n-grams such as "renal neoplasm" and "evalu with enhanc" being most predictive of a follow-up recommendation. Key to maximizing performance was feature engineering that extracts predictive information and appropriate selection of machine learning algorithms based on the feature set.
Collapse
|
4
|
Abstract
BACKGROUND Data mining technology used in the field of medicine has been widely studied by scholars all over the world. But there is little research on medical data mining (MDM) from the perspectives of bibliometrics and visualization, and the research topics and development trends in this field are still unclear. METHODS This paper has applied bibliometric visualization software tools, VOSviewer 1.6.10 and CiteSpace V, to study the citation characteristics, international cooperation, author cooperation, and geographical distribution of the MDM. RESULTS A total of 1575 documents are obtained, and the most frequent document type is article (1376). SHAN NH is the most productive author, with the highest number of publications of 12, and the Gillies's article (750 times citation) is the most cited paper. The most productive country and institution in MDM is the USA (559) and US FDA (35), respectively. The Journal of Biomedical Informatics, Expert Systems with Applications and Journal of Medical Systems are the most productive journals, which reflected the nature of the research, and keywords "classification (790)" and "system (576)" have the strongest strength. The hot topics in MDM are drug discovery, medical imaging, vaccine safety, and so on. The 3 frontier topics are reporting system, precision medicine, and inflammation, and would be the foci of future research. CONCLUSION The present study provides a panoramic view of data mining methods applied in medicine by visualization and bibliometrics. Analysis of authors, journals, institutions, and countries could provide reference for researchers who are fresh to the field in different ways. Researchers may also consider the emerging trends when deciding the direction of their study.
Collapse
Affiliation(s)
- Yuanzhang Hu
- School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan
| | - Zeyun Yu
- College of Acupuncture and TuiNa, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoen Cheng
- School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan
| | - Yue Luo
- School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan
| | - Chuanbiao Wen
- School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan
| |
Collapse
|