1
|
Kikuchi T, Hanaoka S, Nakao T, Nomura Y, Mori H, Yoshikawa T. Impact of CT-determined low kidney volume on renal function decline: a propensity score-matched analysis. Insights Imaging 2024; 15:102. [PMID: 38578554 PMCID: PMC10997556 DOI: 10.1186/s13244-024-01671-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/08/2024] [Indexed: 04/06/2024] Open
Abstract
OBJECTIVES To investigate the relationship between low kidney volume and subsequent estimated glomerular filtration rate (eGFR) decline in eGFR category G2 (60-89 mL/min/1.73 m2) population. METHODS In this retrospective study, we evaluated 5531 individuals with eGFR category G2 who underwent medical checkups at our institution between November 2006 and October 2017. Exclusion criteria were absent for follow-up visit, missing data, prior renal surgery, current renal disease under treatment, large renal masses, and horseshoe kidney. We developed a 3D U-net-based automated system for renal volumetry on CT images. Participants were grouped by sex-specific kidney volume deviations set at mean minus one standard deviation. After 1:1 propensity score matching, we obtained 397 pairs of individuals in the low kidney volume (LKV) and control groups. The primary endpoint was progression of eGFR categories within 5 years, assessed using Cox regression analysis. RESULTS This study included 3220 individuals (mean age, 60.0 ± 9.7 years; men, n = 2209). The kidney volume was 404.6 ± 67.1 and 376.8 ± 68.0 cm3 in men and women, respectively. The low kidney volume (LKV) cutoff was 337.5 and 308.8 cm3 for men and women, respectively. LKV was a significant risk factor for the endpoint with an adjusted hazard ratio of 1.64 (95% confidence interval: 1.09-2.45; p = 0.02). CONCLUSION Low kidney volume may adversely affect subsequent eGFR maintenance; hence, the use of imaging metrics may help predict eGFR decline. CRITICAL RELEVANCE STATEMENT Low kidney volume is a significant predictor of reduced kidney function over time; thus, kidney volume measurements could aid in early identification of individuals at risk for declining kidney health. KEY POINTS • This study explores how kidney volume affects subsequent kidney function maintenance. • Low kidney volume was associated with estimated glomerular filtration rate decreases. • Low kidney volume is a prognostic indicator of estimated glomerular filtration rate decline.
Collapse
Affiliation(s)
- Tomohiro Kikuchi
- Department of Computational Diagnostic Radiology and Preventive Medicine, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan.
- Department of Radiology, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan.
| | - Shouhei Hanaoka
- Department of Radiology, University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, Japan
| | - Takahiro Nakao
- Department of Computational Diagnostic Radiology and Preventive Medicine, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Yukihiro Nomura
- Department of Computational Diagnostic Radiology and Preventive Medicine, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
- Center for Frontier Medical Engineering, Chiba University, 1-33 Yayoicho, Inage-Ku, Chiba, Japan
| | - Harushi Mori
- Department of Radiology, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Takeharu Yoshikawa
- Department of Computational Diagnostic Radiology and Preventive Medicine, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| |
Collapse
|
2
|
Kikuchi T, Hanaoka S, Nakao T, Nomura Y, Yoshikawa T, Alam MA, Mori H, Hayashi N. Relationship between Thyroid CT Density, Volume, and Future TSH Elevation: A 5-Year Follow-Up Study. Life (Basel) 2023; 13:2303. [PMID: 38137904 PMCID: PMC10744487 DOI: 10.3390/life13122303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
This study aimed to explore the relationship between thyroid-stimulating hormone (TSH) elevation and the baseline computed tomography (CT) density and volume of the thyroid. We examined 86 cases with new-onset hypothyroidism (TSH > 4.5 IU/mL) and 1071 controls from a medical check-up database over 5 years. A deep learning-based thyroid segmentation method was used to assess CT density and volume. Statistical tests and logistic regression were employed to determine differences and odds ratios. Initially, the case group showed a higher CT density (89.8 vs. 81.7 Hounsfield units (HUs)) and smaller volume (13.0 vs. 15.3 mL) than those in the control group. For every +10 HU in CT density and -3 mL in volume, the odds of developing hypothyroidism increased by 1.40 and 1.35, respectively. Over the course of the study, the case group showed a notable CT density reduction (median: -8.9 HU), whereas the control group had a minor decrease (-2.9 HU). Thyroid volume remained relatively stable for both groups. Higher CT density and smaller thyroid volume at baseline are correlated with future TSH elevation. Over time, there was a substantial and minor decrease in CT density in the case and control groups, respectively. Thyroid volumes remained consistent in both cohorts.
Collapse
Affiliation(s)
- Tomohiro Kikuchi
- Department of Computational Diagnostic Radiology and Preventive Medicine, The University of Tokyo Hospital, Tokyo 113-8655, Japan (M.A.A.)
- Department of Radiology, School of Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | - Shouhei Hanaoka
- Department of Radiology, The University of Tokyo Hospital, Tokyo 113-8655, Japan
| | - Takahiro Nakao
- Department of Computational Diagnostic Radiology and Preventive Medicine, The University of Tokyo Hospital, Tokyo 113-8655, Japan (M.A.A.)
| | - Yukihiro Nomura
- Department of Computational Diagnostic Radiology and Preventive Medicine, The University of Tokyo Hospital, Tokyo 113-8655, Japan (M.A.A.)
- Center for Frontier Medical Engineering, Chiba University, Chiba 263-8522, Japan
| | - Takeharu Yoshikawa
- Department of Computational Diagnostic Radiology and Preventive Medicine, The University of Tokyo Hospital, Tokyo 113-8655, Japan (M.A.A.)
| | - Md Ashraful Alam
- Department of Computational Diagnostic Radiology and Preventive Medicine, The University of Tokyo Hospital, Tokyo 113-8655, Japan (M.A.A.)
| | - Harushi Mori
- Department of Radiology, School of Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | - Naoto Hayashi
- Department of Computational Diagnostic Radiology and Preventive Medicine, The University of Tokyo Hospital, Tokyo 113-8655, Japan (M.A.A.)
| |
Collapse
|
3
|
D'Arnese E, Donato GWD, Sozzo ED, Sollini M, Sciuto D, Santambrogio MD. On the Automation of Radiomics-Based Identification and Characterization of NSCLC. IEEE J Biomed Health Inform 2022; 26:2670-2679. [PMID: 35255001 DOI: 10.1109/jbhi.2022.3156984] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Proper detection and accurate characterization of Non-Small Cell Lung Cancer (NSCLC) are an open challenge in the imaging field. Biomedical imaging is fundamental in lung cancer assessment and offers the possibility of calculating predictive biomarkers impacting patients' management. Within this context, radiomics, which consists of extracting quantitative features from digital images, shows encouraging results for clinical applications, but the sub-optimal standardization of the procedure and the lack of definitive results are still a concern in the field. For these reasons, this work proposes the design and development of LuCIFEx, a fully-automated pipeline for non-invasive in-vivo characterization of NSCLC, aiming to speed up the analysis process and enable an early diagnosis of the tumor.LuCIFEx pipeline relies on routinely acquired [18F]FDG-PET/CT images for the automatic segmentation of the cancer lesion, allowing the computation of accurate radiomic features, then employed for cancer characterization through Machine Learning algorithms. The proposed multi-stage segmentation process can identify the lesion with a mean accuracy of 94.2±5.0%. Finally, the proposed data analysis pipeline demonstrates the potential of PET/CT features for the automatic recognition of lung metastases and NSCLC histological subtypes, while highlighting the main current limitations of the radiomic approach.
Collapse
|
4
|
Mireștean CC, Volovăț C, Iancu RI, Iancu DPT. Radiomics in Triple Negative Breast Cancer: New Horizons in an Aggressive Subtype of the Disease. J Clin Med 2022; 11:jcm11030616. [PMID: 35160069 PMCID: PMC8836903 DOI: 10.3390/jcm11030616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 12/17/2022] Open
Abstract
In the last decade, the analysis of the medical images has evolved significantly, applications and tools capable to extract quantitative characteristics of the images beyond the discrimination capacity of the investigator's eye being developed. The applications of this new research field, called radiomics, presented an exponential growth with direct implications in the diagnosis and prediction of response to therapy. Triple negative breast cancer (TNBC) is an aggressive breast cancer subtype with a severe prognosis, despite the aggressive multimodal treatments applied according to the guidelines. Radiomics has already proven the ability to differentiate TNBC from fibroadenoma. Radiomics features extracted from digital mammography may also distinguish between TNBC and non-TNBC. Recent research has identified three distinct subtypes of TNBC using IRM breast images voxel-level radiomics features (size/shape related features, texture features, sharpness). The correlation of these TNBC subtypes with the clinical response to neoadjuvant therapy may lead to the identification of biomarkers in order to guide the clinical decision. Furthermore, the variation of some radiomics features in the neoadjuvant settings provides a tool for the rapid evaluation of treatment efficacy. The association of radiomics features with already identified biomarkers can generate complex predictive and prognostic models. Standardization of image acquisition and also of radiomics feature extraction is required to validate this method in clinical practice.
Collapse
Affiliation(s)
- Camil Ciprian Mireștean
- Department of Oncology and Radiotherapy, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
- Department of Surgery, Railways Clinical Hospital, 700506 Iasi, Romania
| | - Constantin Volovăț
- Department of Medical Oncology-Radiotherapy, Faculty of Medicine, “Gr. T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (C.V.); (D.P.T.I.)
- Euroclinic Oncological Hospital, 700110 Iasi, Romania
| | - Roxana Irina Iancu
- Department of Oral Pathology, Faculty of Dentistry, “Gr. T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Clinical Laboratory Department, “St. Spiridon” Emergency Hospital, 700111 Iasi, Romania
- Correspondence: ; Tel.: +40-232-301-603
| | - Dragoș Petru Teodor Iancu
- Department of Medical Oncology-Radiotherapy, Faculty of Medicine, “Gr. T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (C.V.); (D.P.T.I.)
- Department of Radiotherapy, Regional Institute of Oncology, 700483 Iasi, Romania
| |
Collapse
|
5
|
Song J, Huang SC, Kelly B, Liao G, Shi J, Wu N, Li W, Liu Z, Cui L, Lungre M, Moseley ME, Gao P, Tian J, Yeom KW. Automatic lung nodule segmentation and intra-nodular heterogeneity image generation. IEEE J Biomed Health Inform 2021; 26:2570-2581. [PMID: 34910645 DOI: 10.1109/jbhi.2021.3135647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Automatic segmentation of lung nodules on computed tomography (CT) images is challenging owing to the variability of morphology, location, and intensity. In addition, few segmentation methods can capture intra-nodular heterogeneity to assist lung nodule diagnosis. In this study, we propose an end-to-end architecture to perform fully automated segmentation of multiple types of lung nodules and generate intra-nodular heterogeneity images for clinical use. To this end, a hybrid loss is considered by introducing a Faster R-CNN model based on generalized intersection over union loss in generative adversarial network. The Lung Image Database Consortium image collection dataset, comprising 2,635 lung nodules, was combined with 3,200 lung nodules from five hospitals for this study. Compared with manual segmentation by radiologists, the proposed model obtained an average dice coefficient (DC) of 82.05% on the test dataset. Compared with U-net, NoduleNet, nnU-net, and other three models, the proposed method achieved comparable performance on lung nodule segmentation and generated more vivid and valid intra-nodular heterogeneity images, which are beneficial in radiological diagnosis. In an external test of 91 patients from another hospital, the proposed model achieved an average DC of 81.61%. The proposed method effectively addresses the challenges of inevitable human interaction and additional pre-processing procedures in the existing solutions for lung nodule segmentation. In addition, the results show that the intra-nodular heterogeneity images generated by the proposed model are suitable to facilitate lung nodule diagnosis in radiology.
Collapse
|