1
|
Jin H, Yu C, Zhang J, Zheng R, Fu Y, Zhao Y. Multitask Swin Transformer for classification and characterization of pulmonary nodules in CT images. Quant Imaging Med Surg 2025; 15:1845-1861. [PMID: 40160630 PMCID: PMC11948416 DOI: 10.21037/qims-24-1619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 12/18/2024] [Indexed: 04/02/2025]
Abstract
Background Early diagnosis of pulmonary nodules is essential for effective prevention and treatment of pulmonary cancer. However, the heterogeneous and complex characteristics of pulmonary nodules, such as shape, size, speculation, and texture, present significant challenges in clinical diagnosis, which computer-aided diagnosis (CAD) can help address. Moreover, the varied performance of deep learning methods in CAD and limited model interpretability often hinder clinicians' understanding of CAD results. In this study, we propose a multitask Swin Transformer (MTST) for classifying benign and malignant pulmonary nodules, which outputs nodule features as classification criteria. Methods We introduce a MTST model for feature extraction, designed with a multitask layer that simultaneously outputs benign and malignant binary classification, multilevel classification, and a detailed analysis of pulmonary nodule features. In addition, we incorporate image augmentation using a U-Net generative adversarial network (GAN) model to enhance the training process. Results Experimental findings on the Lung Image Database Consortium and Image Database Resource Initiative (LIDC-IDRI) dataset demonstrate that the proposed MTST outperforms conventional convolutional neural networks (CNN)-based networks across multiple tasks. Specifically, MTST achieved an accuracy of 93.24% in binary classification of benign and malignant nodules and demonstrated superior performance in nodule feature evaluation. For multilevel classification of pulmonary nodules, the Swin Transformer achieved an accuracy of 95.73%. On the training, validation, and test sets (9,600/2,400/1,600 nodules), the MTST model achieved an accuracy of 93.74%, sensitivity of 91.55%, and specificity of 96.09%. The results indicate that the MTST model aligns well with clinical diagnostic practices, offering improved performance and reliability. Conclusions The MTST model's efficacy in binary classification, multiclass classification, and feature evaluation confirms its potential as a valuable tool for CAD systems in clinical settings.
Collapse
Affiliation(s)
- Haizhe Jin
- Department of Industrial Engineering, School of Business Administration, Northeastern University, Shenyang, China
| | - Cheng Yu
- Management Science and Engineering, School of Management, Xi’an Jiaotong University, Xi’an, China
| | - Jiahao Zhang
- Department of Industrial Engineering, School of Business Administration, Northeastern University, Shenyang, China
| | - Renjie Zheng
- Department of Information Security, School of Software College, Northeastern University, Shenyang, China
| | - Yongyan Fu
- Department of Ophthalmology, The People’s Hospital of Liaoning Province, Shenyang, China
| | - Yinan Zhao
- Department of Neurology, Xuanwu Hospital, National Center for Neurological Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Zhu H, Liu W, Gao Z, Zhang H. Explainable Classification of Benign-Malignant Pulmonary Nodules With Neural Networks and Information Bottleneck. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2025; 36:2028-2039. [PMID: 37843998 DOI: 10.1109/tnnls.2023.3303395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Computerized tomography (CT) is a clinically primary technique to differentiate benign-malignant pulmonary nodules for lung cancer diagnosis. Early classification of pulmonary nodules is essential to slow down the degenerative process and reduce mortality. The interactive paradigm assisted by neural networks is considered to be an effective means for early lung cancer screening in large populations. However, some inherent characteristics of pulmonary nodules in high-resolution CT images, e.g., diverse shapes and sparse distribution over the lung fields, have been inducing inaccurate results. On the other hand, most existing methods with neural networks are dissatisfactory from a lack of transparency. In order to overcome these obstacles, a united framework is proposed, including the classification and feature visualization stages, to learn distinctive features and provide visual results. Specifically, a bilateral scheme is employed to synchronously extract and aggregate global-local features in the classification stage, where the global branch is constructed to perceive deep-level features and the local branch is built to focus on the refined details. Furthermore, an encoder is built to generate some features, and a decoder is constructed to simulate decision behavior, followed by the information bottleneck viewpoint to optimize the objective. Extensive experiments are performed to evaluate our framework on two publicly available datasets, namely, 1) the Lung Image Database Consortium and Image Database Resource Initiative (LIDC-IDRI) and 2) the Lung and Colon Histopathological Image Dataset (LC25000). For instance, our framework achieves 92.98% accuracy and presents additional visualizations on the LIDC. The experiment results show that our framework can obtain outstanding performance and is effective to facilitate explainability. It also demonstrates that this united framework is a serviceable tool and further has the scalability to be introduced into clinical research.
Collapse
|
3
|
Afridi WA, Picos SH, Bark JM, Stamoudis DAF, Vasani S, Irwin D, Fielding D, Punyadeera C. Minimally invasive biomarkers for triaging lung nodules-challenges and future perspectives. Cancer Metastasis Rev 2025; 44:29. [PMID: 39888565 PMCID: PMC11785609 DOI: 10.1007/s10555-025-10247-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/23/2025] [Indexed: 02/01/2025]
Abstract
CT chest scans are commonly performed worldwide, either in routine clinical practice for a wide range of indications or as part of lung cancer screening programs. Many of these scans detect lung nodules, which are small, rounded opacities measuring 8-30 mm. While the concern about nodules is that they may represent early lung cancer, in screening programs, only 1% of such nodules turn out to be cancer. This leads to a series of complex decisions and, at times, unnecessary biopsies for nodules that are ultimately determined to be benign. Additionally, patients may be anxious about the status of detected lung nodules. The high rate of false positive lung nodule detections has driven advancements in biomarker-based research aimed at triaging lung nodules (benign versus malignant) to identify truly malignant nodules better. Biomarkers found in biofluids and breath hold promise owing to their minimally invasive sampling methods, ease of use, and cost-effectiveness. Although several biomarkers have demonstrated clinical utility, their sensitivity and specificity are still relatively low. Combining multiple biomarkers could enhance the characterisation of small pulmonary nodules by addressing the limitations of individual biomarkers. This approach may help reduce unnecessary invasive procedures and accelerate diagnosis in the future. This review offers a thorough overview of emerging minimally invasive biomarkers for triaging lung nodules, emphasising key challenges and proposing potential solutions for biomarker-based nodule differentiation. It focuses on diagnosis rather than screening, analysing research published primarily in the past five years with some exceptions. The incorporation of biomarkers into clinical practice will facilitate the early detection of malignant nodules, leading to timely interventions and improved outcomes. Further efforts are needed to increase the cost-effectiveness and practicality of many of these applications in clinical settings. However, the range of technologies is advancing rapidly, and they may soon be implemented in clinics in the near future.
Collapse
Affiliation(s)
- Waqar Ahmed Afridi
- Saliva and Liquid Biopsy Translational Laboratory, Institute for Biomedicine and Glycomics (IBG), Griffith University, Brisbane, 4111, Australia
- Virtual University of Pakistan, Islamabad, 44000, Pakistan
| | - Samandra Hernandez Picos
- Saliva and Liquid Biopsy Translational Laboratory, Institute for Biomedicine and Glycomics (IBG), Griffith University, Brisbane, 4111, Australia
| | - Juliana Muller Bark
- Saliva and Liquid Biopsy Translational Laboratory, Institute for Biomedicine and Glycomics (IBG), Griffith University, Brisbane, 4111, Australia
| | - Danyelle Assis Ferreira Stamoudis
- Saliva and Liquid Biopsy Translational Laboratory, Institute for Biomedicine and Glycomics (IBG), Griffith University, Brisbane, 4111, Australia
| | - Sarju Vasani
- Department of Otolaryngology, Royal Brisbane and Women's Hospital, Herston, 4006, Australia
| | - Darryl Irwin
- The Agena Biosciences, Bowen Hills, Brisbane, 4006, Australia
| | - David Fielding
- The Royal Brisbane and Women's Hospital, Herston, Brisbane, 4006, Australia
| | - Chamindie Punyadeera
- Saliva and Liquid Biopsy Translational Laboratory, Institute for Biomedicine and Glycomics (IBG), Griffith University, Brisbane, 4111, Australia.
| |
Collapse
|
4
|
Zhou T, Ye X, Lu H, Guo Y, Wang H, Liu Y. An adaptive and lightweight YOLOv5 detection model for lung tumor in PET/CT images. Sci Rep 2024; 14:30719. [PMID: 39730429 DOI: 10.1038/s41598-024-79786-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 11/12/2024] [Indexed: 12/29/2024] Open
Abstract
Multi-modal medical images are important in tumor lesion detection. However, the existing detection models only use single-modal to detect lesions, a multi-modal semantic correlation is not enough to consider and lacks ability to express the shape, size, and contrast degree features of lesions. A Cross Modal YOLOv5 model (CMYOLOv5) is proposed. Firstly, there are two networks, auxiliary network is consisted by dual-branch structure to extract semantic information from PET and CT, backbone network is consisted by YOLOv5 to extract semantic information from PET/CT. Secondly, Cross-modal Features Fusion (CFF) is designed in auxiliary network to fuse PET functional information and CT anatomical information. Self-Adaptive Attention Fusion (AAF) is designed in backbone network to fuse and enhance three-modal complementary information. Thirdly, Self-Adaptive Transformer (SAT) is designed in feature enhance neck. Using Transformer with deformable attention mechanism to focus on lung tumor region. Using MLP with channel attention mechanism to enhance features representation ability of lung tumor region. Finally, Reparameter Residual Block (RRB) and Reparameter Convolution operation (RC) are designed to fully learn richer PET, CT and PET/CT feature. Comparative experiments are conducted on clinical lung tumor PET/CT multi-modality dataset, the effectiveness of CMYOLOv5 is verified by Precision, Recall, mAP, F1, FPS, and training time, experimental results are 97.16%, 96.41%, 97.18%, 96.78%, 96.37 and 3912 s. CMYOLOv5 has high precision in the detection of irregular lung tumors, which is superior to the existing advanced methods.
Collapse
Affiliation(s)
- Tao Zhou
- School of Computer Science and Engineering, North Minzu University, Yinchuan, 750021, China
- Key Laboratory of Image and Graphics Intelligent Processing of State Ethnic Affairs Commission, North Minzu University, Yinchuan, 750021, China
| | - Xinyu Ye
- School of Computer Science and Engineering, North Minzu University, Yinchuan, 750021, China.
- Key Laboratory of Image and Graphics Intelligent Processing of State Ethnic Affairs Commission, North Minzu University, Yinchuan, 750021, China.
| | - Huiling Lu
- School of Medical Information and Engineering, Ningxia Medical University, Yinchuan, 750004, China
| | - Yujie Guo
- School of Computer Science and Engineering, North Minzu University, Yinchuan, 750021, China
- Key Laboratory of Image and Graphics Intelligent Processing of State Ethnic Affairs Commission, North Minzu University, Yinchuan, 750021, China
| | - Hongxia Wang
- School of Computer Science and Engineering, North Minzu University, Yinchuan, 750021, China
- Key Laboratory of Image and Graphics Intelligent Processing of State Ethnic Affairs Commission, North Minzu University, Yinchuan, 750021, China
| | - Yang Liu
- School of Computer Science and Engineering, North Minzu University, Yinchuan, 750021, China
- Key Laboratory of Image and Graphics Intelligent Processing of State Ethnic Affairs Commission, North Minzu University, Yinchuan, 750021, China
| |
Collapse
|
5
|
Li T, Mao J, Yu J, Zhao Z, Chen M, Yao Z, Fang L, Hu B. Fully automated classification of pulmonary nodules in positron emission tomography-computed tomography imaging using a two-stage multimodal learning approach. Quant Imaging Med Surg 2024; 14:5526-5540. [PMID: 39144014 PMCID: PMC11320548 DOI: 10.21037/qims-24-234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 06/17/2024] [Indexed: 08/16/2024]
Abstract
Background Lung cancer is a malignant tumor, for which pulmonary nodules are considered to be significant indicators. Early recognition and timely treatment of pulmonary nodules can contribute to improving the survival rate of patients with cancer. Positron emission tomography-computed tomography (PET/CT) is a noninvasive, fusion imaging technique that can obtain both functional and structural information of lung regions. However, studies of pulmonary nodules based on computer-aided diagnosis have primarily focused on the nodule level due to a reliance on the annotation of nodules, which is superficial and unable to contribute to the actual clinical diagnosis. The aim of this study was thus to develop a fully automated classification framework for a more comprehensive assessment of pulmonary nodules in PET/CT imaging data. Methods We developed a two-stage multimodal learning framework for the diagnosis of pulmonary nodules in PET/CT imaging. In this framework, Stage I focuses on pulmonary parenchyma segmentation using a pretrained U-Net and PET/CT registration. Stage II aims to extract, integrate, and recognize image-level and feature-level features by employing the three-dimensional (3D) Inception-residual net (ResNet) convolutional block attention module architecture and a dense-voting fusion mechanism. Results In the experiments, the proposed model's performance was comprehensively validated using a set of real clinical data, achieving mean scores of 89.98%, 89.21%, 84.75%, 93.38%, 86.83%, and 0.9227 for accuracy, precision, recall, specificity, F1 score, and area under curve values, respectively. Conclusions This paper presents a two-stage multimodal learning approach for the automatic diagnosis of pulmonary nodules. The findings reveal that the main reason for limiting model performance is the nonsolitary property of nodules in pulmonary nodule diagnosis, providing direction for future research.
Collapse
Affiliation(s)
- Tongtong Li
- School of Information Science and Engineering, Lanzhou University, Lanzhou, China
- Gansu Provincial Key Laboratory of Wearable Computing, Lanzhou University, Lanzhou, China
| | - Junfeng Mao
- Department of Nuclear Medicine, The 940th Hospital of Joint Logistics Support Force of Chinese People’s Liberation Army, Lanzhou, China
- School of Basic Medical Sciences, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Jiandong Yu
- School of Information Science and Engineering, Lanzhou University, Lanzhou, China
- Gansu Provincial Key Laboratory of Wearable Computing, Lanzhou University, Lanzhou, China
| | - Ziyang Zhao
- School of Information Science and Engineering, Lanzhou University, Lanzhou, China
- Gansu Provincial Key Laboratory of Wearable Computing, Lanzhou University, Lanzhou, China
| | - Miao Chen
- School of Information Science and Engineering, Lanzhou University, Lanzhou, China
- Gansu Provincial Key Laboratory of Wearable Computing, Lanzhou University, Lanzhou, China
| | - Zhijun Yao
- School of Information Science and Engineering, Lanzhou University, Lanzhou, China
- Gansu Provincial Key Laboratory of Wearable Computing, Lanzhou University, Lanzhou, China
| | - Lei Fang
- Department of Nuclear Medicine, Taikang Tongji (Wuhan) Hospital, Wuhan, China
| | - Bin Hu
- School of Information Science and Engineering, Lanzhou University, Lanzhou, China
- Gansu Provincial Key Laboratory of Wearable Computing, Lanzhou University, Lanzhou, China
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Joint Research Center for Cognitive Neurosensor Technology of Lanzhou University & Institute of Semiconductors, Chinese Academy of Sciences, Lanzhou, China
| |
Collapse
|
6
|
Apostolopoulos ID, Papathanasiou ND, Apostolopoulos DJ, Papandrianos N, Papageorgiou EI. Integrating Machine Learning in Clinical Practice for Characterizing the Malignancy of Solitary Pulmonary Nodules in PET/CT Screening. Diseases 2024; 12:115. [PMID: 38920547 PMCID: PMC11202816 DOI: 10.3390/diseases12060115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/27/2024] Open
Abstract
The study investigates the efficiency of integrating Machine Learning (ML) in clinical practice for diagnosing solitary pulmonary nodules' (SPN) malignancy. Patient data had been recorded in the Department of Nuclear Medicine, University Hospital of Patras, in Greece. A dataset comprising 456 SPN characteristics extracted from CT scans, the SUVmax score from the PET examination, and the ultimate outcome (benign/malignant), determined by patient follow-up or biopsy, was used to build the ML classifier. Two medical experts provided their malignancy likelihood scores, taking into account the patient's clinical condition and without prior knowledge of the true label of the SPN. Incorporating human assessments into ML model training improved diagnostic efficiency by approximately 3%, highlighting the synergistic role of human judgment alongside ML. Under the latter setup, the ML model had an accuracy score of 95.39% (CI 95%: 95.29-95.49%). While ML exhibited swings in probability scores, human readers excelled in discerning ambiguous cases. ML outperformed the best human reader in challenging instances, particularly in SPNs with ambiguous probability grades, showcasing its utility in diagnostic grey zones. The best human reader reached an accuracy of 80% in the grey zone, whilst ML exhibited 89%. The findings underline the collaborative potential of ML and human expertise in enhancing SPN characterization accuracy and confidence, especially in cases where diagnostic certainty is elusive. This study contributes to understanding how integrating ML and human judgement can optimize SPN diagnostic outcomes, ultimately advancing clinical decision-making in PET/CT screenings.
Collapse
Affiliation(s)
- Ioannis D. Apostolopoulos
- Department of Energy Systems, University of Thessaly, Gaiopolis Campus, 41500 Larisa, Greece; (N.P.); (E.I.P.)
| | - Nikolaos D. Papathanasiou
- Department of Nuclear Medicine, University Hospital of Patras, 26504 Rio, Greece; (N.D.P.); (D.J.A.)
| | | | - Nikolaos Papandrianos
- Department of Energy Systems, University of Thessaly, Gaiopolis Campus, 41500 Larisa, Greece; (N.P.); (E.I.P.)
| | - Elpiniki I. Papageorgiou
- Department of Energy Systems, University of Thessaly, Gaiopolis Campus, 41500 Larisa, Greece; (N.P.); (E.I.P.)
| |
Collapse
|
7
|
Sun L, Zhang M, Lu Y, Zhu W, Yi Y, Yan F. Nodule-CLIP: Lung nodule classification based on multi-modal contrastive learning. Comput Biol Med 2024; 175:108505. [PMID: 38688129 DOI: 10.1016/j.compbiomed.2024.108505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/28/2024] [Accepted: 04/21/2024] [Indexed: 05/02/2024]
Abstract
The latest developments in deep learning have demonstrated the importance of CT medical imaging for the classification of pulmonary nodules. However, challenges remain in fully leveraging the relevant medical annotations of pulmonary nodules and distinguishing between the benign and malignant labels of adjacent nodules. Therefore, this paper proposes the Nodule-CLIP model, which deeply mines the potential relationship between CT images, complex attributes of lung nodules, and benign and malignant attributes of lung nodules through a comparative learning method, and optimizes the model in the image feature extraction network by using its similarities and differences to improve its ability to distinguish similar lung nodules. Firstly, we segment the 3D lung nodule information by U-Net to reduce the interference caused by the background of lung nodules and focus on the lung nodule images. Secondly, the image features, class features, and complex attribute features are aligned by contrastive learning and loss function in Nodule-CLIP to achieve lung nodule image optimization and improve classification ability. A series of testing and ablation experiments were conducted on the public dataset LIDC-IDRI, and the final benign and malignant classification rate was 90.6%, and the recall rate was 92.81%. The experimental results show the advantages of this method in terms of lung nodule classification as well as interpretability.
Collapse
Affiliation(s)
- Lijing Sun
- College of Electrical Engineering and Control Science, Nanjing Tech University, Nanjing, 211800, Jiangsu, China
| | - Mengyi Zhang
- College of Electrical Engineering and Control Science, Nanjing Tech University, Nanjing, 211800, Jiangsu, China.
| | - Yu Lu
- College of Electrical Engineering and Control Science, Nanjing Tech University, Nanjing, 211800, Jiangsu, China
| | - Wenjun Zhu
- College of Electrical Engineering and Control Science, Nanjing Tech University, Nanjing, 211800, Jiangsu, China
| | - Yang Yi
- College of Electrical Engineering and Control Science, Nanjing Tech University, Nanjing, 211800, Jiangsu, China
| | - Fei Yan
- Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Nanjing, 210009, Jiangsu, China
| |
Collapse
|
8
|
UrRehman Z, Qiang Y, Wang L, Shi Y, Yang Q, Khattak SU, Aftab R, Zhao J. Effective lung nodule detection using deep CNN with dual attention mechanisms. Sci Rep 2024; 14:3934. [PMID: 38365831 PMCID: PMC10873370 DOI: 10.1038/s41598-024-51833-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 01/10/2024] [Indexed: 02/18/2024] Open
Abstract
Novel methods are required to enhance lung cancer detection, which has overtaken other cancer-related causes of death as the major cause of cancer-related mortality. Radiologists have long-standing methods for locating lung nodules in patients with lung cancer, such as computed tomography (CT) scans. Radiologists must manually review a significant amount of CT scan pictures, which makes the process time-consuming and prone to human error. Computer-aided diagnosis (CAD) systems have been created to help radiologists with their evaluations in order to overcome these difficulties. These systems make use of cutting-edge deep learning architectures. These CAD systems are designed to improve lung nodule diagnosis efficiency and accuracy. In this study, a bespoke convolutional neural network (CNN) with a dual attention mechanism was created, which was especially crafted to concentrate on the most important elements in images of lung nodules. The CNN model extracts informative features from the images, while the attention module incorporates both channel attention and spatial attention mechanisms to selectively highlight significant features. After the attention module, global average pooling is applied to summarize the spatial information. To evaluate the performance of the proposed model, extensive experiments were conducted using benchmark dataset of lung nodules. The results of these experiments demonstrated that our model surpasses recent models and achieves state-of-the-art accuracy in lung nodule detection and classification tasks.
Collapse
Affiliation(s)
- Zia UrRehman
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan, China
| | - Yan Qiang
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan, China
- School of Software, North University of China, Taiyuan, China
| | - Long Wang
- Jinzhong College of Information, Jinzhong, China
| | - Yiwei Shi
- NHC Key Laboratory of Pneumoconiosis, Shanxi Key Laboratory of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | | | - Saeed Ullah Khattak
- Centre of Biotechnology and Microbiology, University of Peshawar, Peshawar, 25120, Pakistan
| | - Rukhma Aftab
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan, China
| | - Juanjuan Zhao
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan, China.
- Jinzhong College of Information, Jinzhong, China.
| |
Collapse
|
9
|
Roy R, Mazumdar S, Chowdhury AS. ADGAN: Attribute-Driven Generative Adversarial Network for Synthesis and Multiclass Classification of Pulmonary Nodules. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:2484-2495. [PMID: 35853058 DOI: 10.1109/tnnls.2022.3190331] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide. According to the American Cancer Society, early diagnosis of pulmonary nodules in computed tomography (CT) scans can improve the five-year survival rate up to 70% with proper treatment planning. In this article, we propose an attribute-driven Generative Adversarial Network (ADGAN) for synthesis and multiclass classification of Pulmonary Nodules. A self-attention U-Net (SaUN) architecture is proposed to improve the generation mechanism of the network. The generator is designed with two modules, namely, self-attention attribute module (SaAM) and a self-attention spatial module (SaSM). SaAM generates a nodule image based on given attributes whereas SaSM specifies the nodule region of the input image to be altered. A reconstruction loss along with an attention localization loss (AL) is used to produce an attention map prioritizing the nodule regions. To avoid resemblance between a generated image and a real image, we further introduce an adversarial loss containing a regularization term based on KL divergence. The discriminator part of the proposed model is designed to achieve the multiclass nodule classification task. Our proposed approach is validated over two challenging publicly available datasets, namely LIDC-IDRI and LUNGX. Exhaustive experimentation on these two datasets clearly indicate that we have achieved promising classification accuracy as compared to other state-of-the-art methods.
Collapse
|
10
|
Chang HH, Wu CZ, Gallogly AH. Pulmonary Nodule Classification Using a Multiview Residual Selective Kernel Network. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024; 37:347-362. [PMID: 38343233 PMCID: PMC10976931 DOI: 10.1007/s10278-023-00928-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/13/2023] [Accepted: 09/25/2023] [Indexed: 03/02/2024]
Abstract
Lung cancer is one of the leading causes of death worldwide and early detection is crucial to reduce the mortality. A reliable computer-aided diagnosis (CAD) system can help facilitate early detection of malignant nodules. Although existing methods provide adequate classification accuracy, there is still room for further improvement. This study is dedicated to investigating a new CAD scheme for predicting the malignant likelihood of lung nodules in computed tomography (CT) images in light of a deep learning strategy. Conceived from the residual learning and selective kernel, we investigated an efficient residual selective kernel (RSK) block to handle the diversity of lung nodules with various shapes and obscure structures. Founded on this RSK block, we established a multiview RSK network (MRSKNet), to which three anatomical planes in the axial, coronal, and sagittal directions were fed. To reinforce the classification efficiency, seven handcrafted texture features with a filter-like computation strategy were explored, among which the homogeneity (HOM) feature maps are combined with the corresponding intensity CT images for concatenation input, leading to an improved network architecture. Evaluated on the public benchmark Lung Image Database Consortium and Image Database Resource Initiative (LIDC-IDRI) challenge database with ten-fold cross validation of binary classification, our experimental results indicated high area under receiver operating characteristic (AUC) and accuracy scores. A better compromise between recall and specificity was struck using the suggested concatenation strategy comparing to many state-of-the-art approaches. The proposed pulmonary nodule classification framework exhibited great efficacy and achieved a higher AUC of 0.9711. The association of handcrafted texture features with deep learning models is promising in advancing the classification performance. The developed pulmonary nodule CAD network architecture is of potential in facilitating the diagnosis of lung cancer for further image processing applications.
Collapse
Affiliation(s)
- Herng-Hua Chang
- Computational Biomedical Engineering Laboratory (CBEL), Department of Engineering Science and Ocean Engineering, National Taiwan University, 1 Sec. 4 Roosevelt Road, Daan, Taipei, 10617, Taiwan.
| | - Cheng-Zhe Wu
- Computational Biomedical Engineering Laboratory (CBEL), Department of Engineering Science and Ocean Engineering, National Taiwan University, 1 Sec. 4 Roosevelt Road, Daan, Taipei, 10617, Taiwan
| | - Audrey Haihong Gallogly
- Department of Radiation Oncology, Keck Medical School, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
11
|
Dong Y, Li X, Yang Y, Wang M, Gao B. A Synthesizing Semantic Characteristics Lung Nodules Classification Method Based on 3D Convolutional Neural Network. Bioengineering (Basel) 2023; 10:1245. [PMID: 38002369 PMCID: PMC10669569 DOI: 10.3390/bioengineering10111245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/30/2023] [Accepted: 10/11/2023] [Indexed: 11/26/2023] Open
Abstract
Early detection is crucial for the survival and recovery of lung cancer patients. Computer-aided diagnosis system can assist in the early diagnosis of lung cancer by providing decision support. While deep learning methods are increasingly being applied to tasks such as CAD (Computer-aided diagnosis system), these models lack interpretability. In this paper, we propose a convolutional neural network model that combines semantic characteristics (SCCNN) to predict whether a given pulmonary nodule is malignant. The model synthesizes the advantages of multi-view, multi-task and attention modules in order to fully simulate the actual diagnostic process of radiologists. The 3D (three dimensional) multi-view samples of lung nodules are extracted by spatial sampling method. Meanwhile, semantic characteristics commonly used in radiology reports are used as an auxiliary task and serve to explain how the model interprets. The introduction of the attention module in the feature fusion stage improves the classification of lung nodules as benign or malignant. Our experimental results using the LIDC-IDRI (Lung Image Database Consortium and Image Database Resource Initiative) show that this study achieves 95.45% accuracy and 97.26% ROC (Receiver Operating Characteristic) curve area. The results show that the method we proposed not only realize the classification of benign and malignant compared to standard 3D CNN approaches but can also be used to intuitively explain how the model makes predictions, which can assist clinical diagnosis.
Collapse
Affiliation(s)
| | - Xiaoqin Li
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China; (Y.D.); (Y.Y.); (M.W.); (B.G.)
| | | | | | | |
Collapse
|
12
|
Zhou T, Liu F, Ye X, Wang H, Lu H. CCGL-YOLOV5:A cross-modal cross-scale global-local attention YOLOV5 lung tumor detection model. Comput Biol Med 2023; 165:107387. [PMID: 37659112 DOI: 10.1016/j.compbiomed.2023.107387] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/29/2023] [Accepted: 08/25/2023] [Indexed: 09/04/2023]
Abstract
BACKGROUND Multimodal medical image detection is a key technology in medical image analysis, which plays an important role in tumor diagnosis. There are different sizes lesions and different shapes lesions in multimodal lung tumor images, which makes it difficult to effectively extract key features of lung tumor lesions. METHODS A Cross-modal Cross-scale Clobal-Local Attention YOLOV5 Lung Tumor Detection Model (CCGL-YOLOV5) is proposed in this paper. The main works are as follows: Firstly, the Cross-Modal Fusion Transformer Module (CMFTM) is designed to improve the multimodal key lesion feature extraction ability and fusion ability through the interactive assisted fusion of multimodal features; Secondly, the Global-Local Feature Interaction Module (GLFIM) is proposed to enhance the interaction ability between multimodal global features and multimodal local features through bidirectional interactive branches. Thirdly, the Cross-Scale Attention Fusion Module (CSAFM) is designed to obtain rich multi-scale features through grouping multi-scale attention for feature fusion. RESULTS The comparison experiments with advanced networks are done. The Acc, Rec, mAP, F1 score and FPS of CCGL-YOLOV5 model on multimodal lung tumor PET/CT dataset are 97.83%, 97.39%, 96.67%, 97.61% and 98.59, respectively; The experimental results show that the performance of CCGL-YOLOV5 model in this paper are better than other typical models. CONCLUSION The CCGL-YOLOV5 model can effectively use the multimodal feature information. There are important implications for multimodal medical image research and clinical disease diagnosis in CCGL-YOLOV5 model.
Collapse
Affiliation(s)
- Tao Zhou
- School of Computer Science and Engineering, North Minzu University, Yinchuan, 750021, China; Key Laboratory of Image and Graphics Intelligent Processing of State Ethnic Affairs Commission, North Minzu University, Yinchuan, 750021, China
| | - Fengzhen Liu
- School of Computer Science and Engineering, North Minzu University, Yinchuan, 750021, China; Key Laboratory of Image and Graphics Intelligent Processing of State Ethnic Affairs Commission, North Minzu University, Yinchuan, 750021, China.
| | - Xinyu Ye
- School of Computer Science and Engineering, North Minzu University, Yinchuan, 750021, China; Key Laboratory of Image and Graphics Intelligent Processing of State Ethnic Affairs Commission, North Minzu University, Yinchuan, 750021, China
| | - Hongwei Wang
- School of Computer Science and Engineering, North Minzu University, Yinchuan, 750021, China; Key Laboratory of Image and Graphics Intelligent Processing of State Ethnic Affairs Commission, North Minzu University, Yinchuan, 750021, China
| | - Huiling Lu
- School of Medical Information and Engineering, Ningxia Medical University, Yinchuan, 750004, China.
| |
Collapse
|
13
|
Hung SC, Wang YT, Tseng MH. An Interpretable Three-Dimensional Artificial Intelligence Model for Computer-Aided Diagnosis of Lung Nodules in Computed Tomography Images. Cancers (Basel) 2023; 15:4655. [PMID: 37760624 PMCID: PMC10526230 DOI: 10.3390/cancers15184655] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/16/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023] Open
Abstract
Lung cancer is typically classified into small-cell carcinoma and non-small-cell carcinoma. Non-small-cell carcinoma accounts for approximately 85% of all lung cancers. Low-dose chest computed tomography (CT) can quickly and non-invasively diagnose lung cancer. In the era of deep learning, an artificial intelligence (AI) computer-aided diagnosis system can be developed for the automatic recognition of CT images of patients, creating a new form of intelligent medical service. For many years, lung cancer has been the leading cause of cancer-related deaths in Taiwan, with smoking and air pollution increasing the likelihood of developing the disease. The incidence of lung adenocarcinoma in never-smoking women has also increased significantly in recent years, resulting in an important public health problem. Early detection of lung cancer and prompt treatment can help reduce the mortality rate of patients with lung cancer. In this study, an improved 3D interpretable hierarchical semantic convolutional neural network named HSNet was developed and validated for the automatic diagnosis of lung cancer based on a collection of lung nodule images. The interpretable AI model proposed in this study, with different training strategies and adjustment of model parameters, such as cyclic learning rate and random weight averaging, demonstrated better diagnostic performance than the previous literature, with results of a four-fold cross-validation procedure showing calcification: 0.9873 ± 0.006, margin: 0.9207 ± 0.009, subtlety: 0.9026 ± 0.014, texture: 0.9685 ± 0.006, sphericity: 0.8652 ± 0.021, and malignancy: 0.9685 ± 0.006.
Collapse
Affiliation(s)
- Sheng-Chieh Hung
- Master Program in Medical Informatics, Chung Shan Medical University, Taichung 402, Taiwan;
| | - Yao-Tung Wang
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan;
- Division of Pulmonary Medicine, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Ming-Hseng Tseng
- Master Program in Medical Informatics, Chung Shan Medical University, Taichung 402, Taiwan;
- Department of Medical Informatics, Chung Shan Medical University, Taichung 402, Taiwan
- Information Technology Office, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| |
Collapse
|
14
|
Cellina M, Cacioppa LM, Cè M, Chiarpenello V, Costa M, Vincenzo Z, Pais D, Bausano MV, Rossini N, Bruno A, Floridi C. Artificial Intelligence in Lung Cancer Screening: The Future Is Now. Cancers (Basel) 2023; 15:4344. [PMID: 37686619 PMCID: PMC10486721 DOI: 10.3390/cancers15174344] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Lung cancer has one of the worst morbidity and fatality rates of any malignant tumour. Most lung cancers are discovered in the middle and late stages of the disease, when treatment choices are limited, and patients' survival rate is low. The aim of lung cancer screening is the identification of lung malignancies in the early stage of the disease, when more options for effective treatments are available, to improve the patients' outcomes. The desire to improve the efficacy and efficiency of clinical care continues to drive multiple innovations into practice for better patient management, and in this context, artificial intelligence (AI) plays a key role. AI may have a role in each process of the lung cancer screening workflow. First, in the acquisition of low-dose computed tomography for screening programs, AI-based reconstruction allows a further dose reduction, while still maintaining an optimal image quality. AI can help the personalization of screening programs through risk stratification based on the collection and analysis of a huge amount of imaging and clinical data. A computer-aided detection (CAD) system provides automatic detection of potential lung nodules with high sensitivity, working as a concurrent or second reader and reducing the time needed for image interpretation. Once a nodule has been detected, it should be characterized as benign or malignant. Two AI-based approaches are available to perform this task: the first one is represented by automatic segmentation with a consequent assessment of the lesion size, volume, and densitometric features; the second consists of segmentation first, followed by radiomic features extraction to characterize the whole abnormalities providing the so-called "virtual biopsy". This narrative review aims to provide an overview of all possible AI applications in lung cancer screening.
Collapse
Affiliation(s)
- Michaela Cellina
- Radiology Department, Fatebenefratelli Hospital, ASST Fatebenefratelli Sacco, 20121 Milano, Italy;
| | - Laura Maria Cacioppa
- Department of Clinical, Special and Dental Sciences, University Politecnica delle Marche, 60126 Ancona, Italy; (L.M.C.); (N.R.); (A.B.)
- Division of Interventional Radiology, Department of Radiological Sciences, University Hospital “Azienda Ospedaliera Universitaria delle Marche”, 60126 Ancona, Italy
| | - Maurizio Cè
- Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, 20122 Milan, Italy; (M.C.); (V.C.); (M.C.); (Z.V.); (D.P.); (M.V.B.)
| | - Vittoria Chiarpenello
- Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, 20122 Milan, Italy; (M.C.); (V.C.); (M.C.); (Z.V.); (D.P.); (M.V.B.)
| | - Marco Costa
- Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, 20122 Milan, Italy; (M.C.); (V.C.); (M.C.); (Z.V.); (D.P.); (M.V.B.)
| | - Zakaria Vincenzo
- Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, 20122 Milan, Italy; (M.C.); (V.C.); (M.C.); (Z.V.); (D.P.); (M.V.B.)
| | - Daniele Pais
- Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, 20122 Milan, Italy; (M.C.); (V.C.); (M.C.); (Z.V.); (D.P.); (M.V.B.)
| | - Maria Vittoria Bausano
- Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, 20122 Milan, Italy; (M.C.); (V.C.); (M.C.); (Z.V.); (D.P.); (M.V.B.)
| | - Nicolò Rossini
- Department of Clinical, Special and Dental Sciences, University Politecnica delle Marche, 60126 Ancona, Italy; (L.M.C.); (N.R.); (A.B.)
| | - Alessandra Bruno
- Department of Clinical, Special and Dental Sciences, University Politecnica delle Marche, 60126 Ancona, Italy; (L.M.C.); (N.R.); (A.B.)
| | - Chiara Floridi
- Department of Clinical, Special and Dental Sciences, University Politecnica delle Marche, 60126 Ancona, Italy; (L.M.C.); (N.R.); (A.B.)
- Division of Interventional Radiology, Department of Radiological Sciences, University Hospital “Azienda Ospedaliera Universitaria delle Marche”, 60126 Ancona, Italy
- Division of Radiology, Department of Radiological Sciences, University Hospital “Azienda Ospedaliera Universitaria delle Marche”, 60126 Ancona, Italy
| |
Collapse
|
15
|
Baidya Kayal E, Ganguly S, Sasi A, Sharma S, DS D, Saini M, Rangarajan K, Kandasamy D, Bakhshi S, Mehndiratta A. A proposed methodology for detecting the malignant potential of pulmonary nodules in sarcoma using computed tomographic imaging and artificial intelligence-based models. Front Oncol 2023; 13:1212526. [PMID: 37671060 PMCID: PMC10476362 DOI: 10.3389/fonc.2023.1212526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/31/2023] [Indexed: 09/07/2023] Open
Abstract
The presence of lung metastases in patients with primary malignancies is an important criterion for treatment management and prognostication. Computed tomography (CT) of the chest is the preferred method to detect lung metastasis. However, CT has limited efficacy in differentiating metastatic nodules from benign nodules (e.g., granulomas due to tuberculosis) especially at early stages (<5 mm). There is also a significant subjectivity associated in making this distinction, leading to frequent CT follow-ups and additional radiation exposure along with financial and emotional burden to the patients and family. Even 18F-fluoro-deoxyglucose positron emission technology-computed tomography (18F-FDG PET-CT) is not always confirmatory for this clinical problem. While pathological biopsy is the gold standard to demonstrate malignancy, invasive sampling of small lung nodules is often not clinically feasible. Currently, there is no non-invasive imaging technique that can reliably characterize lung metastases. The lung is one of the favored sites of metastasis in sarcomas. Hence, patients with sarcomas, especially from tuberculosis prevalent developing countries, can provide an ideal platform to develop a model to differentiate lung metastases from benign nodules. To overcome the lack of optimal specificity of CT scan in detecting pulmonary metastasis, a novel artificial intelligence (AI)-based protocol is proposed utilizing a combination of radiological and clinical biomarkers to identify lung nodules and characterize it as benign or metastasis. This protocol includes a retrospective cohort of nearly 2,000-2,250 sample nodules (from at least 450 patients) for training and testing and an ambispective cohort of nearly 500 nodules (from 100 patients; 50 patients each from the retrospective and prospective cohort) for validation. Ground-truth annotation of lung nodules will be performed using an in-house-built segmentation tool. Ground-truth labeling of lung nodules (metastatic/benign) will be performed based on histopathological results or baseline and/or follow-up radiological findings along with clinical outcome of the patient. Optimal methods for data handling and statistical analysis are included to develop a robust protocol for early detection and classification of pulmonary metastasis at baseline and at follow-up and identification of associated potential clinical and radiological markers.
Collapse
Affiliation(s)
- Esha Baidya Kayal
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Shuvadeep Ganguly
- Medical Oncology, Dr. B.R.Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, Delhi, India
| | - Archana Sasi
- Medical Oncology, Dr. B.R.Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, Delhi, India
| | - Swetambri Sharma
- Medical Oncology, Dr. B.R.Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, Delhi, India
| | - Dheeksha DS
- Department of Radiodiagnosis, All India Institute of Medical Sciences, New Delhi, Delhi, India
| | - Manish Saini
- Department of Radiodiagnosis, All India Institute of Medical Sciences, New Delhi, Delhi, India
| | - Krithika Rangarajan
- Radiodiagnosis, Dr. B.R.Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, Delhi, India
| | | | - Sameer Bakhshi
- Medical Oncology, Dr. B.R.Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, Delhi, India
| | - Amit Mehndiratta
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, India
- Department of Biomedical Engineering, All India Institute of Medical Sciences, New Delhi, Delhi, India
| |
Collapse
|
16
|
Thanoon MA, Zulkifley MA, Mohd Zainuri MAA, Abdani SR. A Review of Deep Learning Techniques for Lung Cancer Screening and Diagnosis Based on CT Images. Diagnostics (Basel) 2023; 13:2617. [PMID: 37627876 PMCID: PMC10453592 DOI: 10.3390/diagnostics13162617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/26/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
One of the most common and deadly diseases in the world is lung cancer. Only early identification of lung cancer can increase a patient's probability of survival. A frequently used modality for the screening and diagnosis of lung cancer is computed tomography (CT) imaging, which provides a detailed scan of the lung. In line with the advancement of computer-assisted systems, deep learning techniques have been extensively explored to help in interpreting the CT images for lung cancer identification. Hence, the goal of this review is to provide a detailed review of the deep learning techniques that were developed for screening and diagnosing lung cancer. This review covers an overview of deep learning (DL) techniques, the suggested DL techniques for lung cancer applications, and the novelties of the reviewed methods. This review focuses on two main methodologies of deep learning in screening and diagnosing lung cancer, which are classification and segmentation methodologies. The advantages and shortcomings of current deep learning models will also be discussed. The resultant analysis demonstrates that there is a significant potential for deep learning methods to provide precise and effective computer-assisted lung cancer screening and diagnosis using CT scans. At the end of this review, a list of potential future works regarding improving the application of deep learning is provided to spearhead the advancement of computer-assisted lung cancer diagnosis systems.
Collapse
Affiliation(s)
- Mohammad A. Thanoon
- Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, University Kebangsaan Malaysia, Bangi 43600, Malaysia;
- System and Control Engineering Department, College of Electronics Engineering, Ninevah University, Mosul 41002, Iraq
| | - Mohd Asyraf Zulkifley
- Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, University Kebangsaan Malaysia, Bangi 43600, Malaysia;
| | - Muhammad Ammirrul Atiqi Mohd Zainuri
- Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, University Kebangsaan Malaysia, Bangi 43600, Malaysia;
| | - Siti Raihanah Abdani
- School of Computing Sciences, College of Computing, Informatics and Media, Universiti Teknologi MARA, Shah Alam 40450, Malaysia;
| |
Collapse
|
17
|
Javed MA, Bin Liaqat H, Meraj T, Alotaibi A, Alshammari M. Identification and Classification of Lungs Focal Opacity Using CNN Segmentation and Optimal Feature Selection. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2023; 2023:6357252. [PMID: 37538561 PMCID: PMC10396675 DOI: 10.1155/2023/6357252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/07/2022] [Accepted: 09/26/2022] [Indexed: 08/05/2023]
Abstract
Lung cancer is one of the deadliest cancers around the world, with high mortality rate in comparison to other cancers. A lung cancer patient's survival probability in late stages is very low. However, if it can be detected early, the patient survival rate can be improved. Diagnosing lung cancer early is a complicated task due to having the visual similarity of lungs nodules with trachea, vessels, and other surrounding tissues that leads toward misclassification of lung nodules. Therefore, correct identification and classification of nodules is required. Previous studies have used noisy features, which makes results comprising. A predictive model has been proposed to accurately detect and classify the lung nodules to address this problem. In the proposed framework, at first, the semantic segmentation was performed to identify the nodules in images in the Lungs image database consortium (LIDC) dataset. Optimal features for classification include histogram oriented gradients (HOGs), local binary patterns (LBPs), and geometric features are extracted after segmentation of nodules. The results shown that support vector machines performed better in identifying the nodules than other classifiers, achieving the highest accuracy of 97.8% with sensitivity of 100%, specificity of 93%, and false positive rate of 6.7%.
Collapse
Affiliation(s)
| | - Hannan Bin Liaqat
- Department of Information Technology, Division of Science and Technology University of Education, Township Campus Lahore, Lahore, Pakistan
| | - Talha Meraj
- Department of Computer Science, COMSATS University Islamabad—Wah Campus, Wah Cantt, Rawalpindi 47040, Pakistan
| | - Aziz Alotaibi
- Department of Computer Science, College of Computers and Information Technology, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Majid Alshammari
- Department of Information Technology, College of Computers and Information Technology, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
18
|
Zhou J, Hu B, Feng W, Zhang Z, Fu X, Shao H, Wang H, Jin L, Ai S, Ji Y. An ensemble deep learning model for risk stratification of invasive lung adenocarcinoma using thin-slice CT. NPJ Digit Med 2023; 6:119. [PMID: 37407729 DOI: 10.1038/s41746-023-00866-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 06/26/2023] [Indexed: 07/07/2023] Open
Abstract
Lung cancer screening using computed tomography (CT) has increased the detection rate of small pulmonary nodules and early-stage lung adenocarcinoma. It would be clinically meaningful to accurate assessment of the nodule histology by CT scans with advanced deep learning algorithms. However, recent studies mainly focus on predicting benign and malignant nodules, lacking of model for the risk stratification of invasive adenocarcinoma. We propose an ensemble multi-view 3D convolutional neural network (EMV-3D-CNN) model to study the risk stratification of lung adenocarcinoma. We include 1075 lung nodules (≤30 mm and ≥4 mm) with preoperative thin-section CT scans and definite pathology confirmed by surgery. Our model achieves a state-of-art performance of 91.3% and 92.9% AUC for diagnosis of benign/malignant and pre-invasive/invasive nodules, respectively. Importantly, our model outperforms senior doctors in risk stratification of invasive adenocarcinoma with 77.6% accuracy [i.e., Grades 1, 2, 3]). It provides detailed predictive histological information for the surgical management of pulmonary nodules. Finally, for user-friendly access, the proposed model is implemented as a web-based system ( https://seeyourlung.com.cn ).
Collapse
Affiliation(s)
- Jing Zhou
- Center for Applied Statistics, School of Statistics, Renmin University of China, Beijing, China
| | - Bin Hu
- Department of Thoracic Surgery, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Wei Feng
- Department of Cardiothoracic Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Zhang Zhang
- Department of Thoracic Surgery, Changsha Central Hospital, Changsha, China
| | - Xiaotong Fu
- Center for Applied Statistics, School of Statistics, Renmin University of China, Beijing, China
| | - Handie Shao
- Center for Applied Statistics, School of Statistics, Renmin University of China, Beijing, China
| | - Hansheng Wang
- Guanghua School of Management, Peking University, Beijing, China
| | - Longyu Jin
- Department of Cardiothoracic Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Siyuan Ai
- Department of Thoracic Surgery, Beijing LIANGXIANG Hospital, Beijing, China
| | - Ying Ji
- Department of Thoracic Surgery, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
19
|
Zhang Y, Feng W, Wu Z, Li W, Tao L, Liu X, Zhang F, Gao Y, Huang J, Guo X. Deep-Learning Model of ResNet Combined with CBAM for Malignant-Benign Pulmonary Nodules Classification on Computed Tomography Images. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1088. [PMID: 37374292 DOI: 10.3390/medicina59061088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/10/2023] [Accepted: 05/17/2023] [Indexed: 06/29/2023]
Abstract
Background and Objectives: Lung cancer remains a leading cause of cancer mortality worldwide. Accurately classifying benign pulmonary nodules and malignant ones is crucial for early diagnosis and improved patient outcomes. The purpose of this study is to explore the deep-learning model of ResNet combined with a convolutional block attention module (CBAM) for the differentiation between benign and malignant lung cancer, based on computed tomography (CT) images, morphological features, and clinical information. Methods and materials: In this study, 8241 CT slices containing pulmonary nodules were retrospectively included. A random sample comprising 20% (n = 1647) of the images was used as the test set, and the remaining data were used as the training set. ResNet combined CBAM (ResNet-CBAM) was used to establish classifiers on the basis of images, morphological features, and clinical information. Nonsubsampled dual-tree complex contourlet transform (NSDTCT) combined with SVM classifier (NSDTCT-SVM) was used as a comparative model. Results: The AUC and the accuracy of the CBAM-ResNet model were 0.940 and 0.867, respectively, in test set when there were only images as inputs. By combining the morphological features and clinical information, CBAM-ResNet shows better performance (AUC: 0.957, accuracy: 0.898). In comparison, a radiomic analysis using NSDTCT-SVM achieved AUC and accuracy values of 0.807 and 0.779, respectively. Conclusions: Our findings demonstrate that deep-learning models, combined with additional information, can enhance the classification performance of pulmonary nodules. This model can assist clinicians in accurately diagnosing pulmonary nodules in clinical practice.
Collapse
Affiliation(s)
- Yanfei Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing 100069, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing 100069, China
| | - Wei Feng
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing 100069, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing 100069, China
| | - Zhiyuan Wu
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing 100069, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing 100069, China
| | - Weiming Li
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing 100069, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing 100069, China
| | - Lixin Tao
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing 100069, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing 100069, China
| | - Xiangtong Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing 100069, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing 100069, China
| | - Feng Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing 100069, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing 100069, China
| | - Yan Gao
- Department of Nuclear Medicine, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Jian Huang
- School of Mathematical Sciences, University College Cork, T12 YN60 Cork, Ireland
| | - Xiuhua Guo
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing 100069, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing 100069, China
| |
Collapse
|
20
|
Atrous convolution aided integrated framework for lung nodule segmentation and classification. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
21
|
Yuan H, Wu Y, Dai M. Multi-Modal Feature Fusion-Based Multi-Branch Classification Network for Pulmonary Nodule Malignancy Suspiciousness Diagnosis. J Digit Imaging 2023; 36:617-626. [PMID: 36478311 PMCID: PMC10039149 DOI: 10.1007/s10278-022-00747-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 09/28/2022] [Accepted: 11/27/2022] [Indexed: 12/13/2022] Open
Abstract
Detecting and identifying malignant nodules on chest computed tomography (CT) plays an important role in the early diagnosis and timely treatment of lung cancer, which can greatly reduce the number of deaths worldwide. In view of the existing methods in pulmonary nodule diagnosis, the importance of clinical radiological structured data (laboratory examination, radiological data) is ignored for the accuracy judgment of patients' condition. Hence, a multi-modal fusion multi-branch classification network is constructed to detect and classify pulmonary nodules in this work: (1) Radiological data of pulmonary nodules are used to construct structured features of length 9. (2) A multi-branch fusion-based effective attention mechanism network is designed for 3D CT Patch unstructured data, which uses 3D ECA-ResNet to dynamically adjust the extracted features. In addition, feature maps with different receptive fields from multi-layer are fully fused to obtain representative multi-scale unstructured features. (3) Multi-modal feature fusion of structured data and unstructured data is performed to distinguish benign and malignant nodules. Numerous experimental results show that this advanced network can effectively classify the benign and malignant pulmonary nodules for clinical diagnosis, which achieves the highest accuracy (94.89%), sensitivity (94.91%), and F1-score (94.65%) and lowest false positive rate (5.55%).
Collapse
Affiliation(s)
- Haiying Yuan
- Beijing University of Technology, Beijing, China.
| | - Yanrui Wu
- Beijing University of Technology, Beijing, China
| | - Mengfan Dai
- Beijing University of Technology, Beijing, China
| |
Collapse
|
22
|
Guo Z, Yang J, Zhao L, Yuan J, Yu H. 3D SAACNet with GBM for the classification of benign and malignant lung nodules. Comput Biol Med 2023; 153:106532. [PMID: 36623436 DOI: 10.1016/j.compbiomed.2022.106532] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 12/15/2022] [Accepted: 12/31/2022] [Indexed: 01/05/2023]
Abstract
In view of the low diagnostic accuracy of the current classification methods of benign and malignant pulmonary nodules, this paper proposes a 3D segmentation attention network integrating asymmetric convolution (SAACNet) classification model combined with a gradient boosting machine (GBM). This can make full use of the spatial information of pulmonary nodules. First, the asymmetric convolution (AC) designed in SAACNet can not only strengthen feature extraction but also improve the network's robustness to object flip and rotation detection and improve network performance. Second, the segmentation attention network integrating AC (SAAC) block can effectively extract more fine-grained multiscale spatial information while adaptively recalibrating multidimensional channel attention weights. The SAACNet also uses a dual-path connection for feature reuse, where the model makes full use of features. In addition, this article makes the loss function pay more attention to difficult and misclassified samples by adding adjustment factors. Third, the GBM is used to splice the nodule size, originally cropped nodule pixels, and the depth features learned by SAACNet to improve the prediction accuracy of the overall model. A comprehensive ablation experiment is carried out on the public dataset LUNA16 and compared with other lung nodule classification models. The classification accuracy (ACC) is 95.18%, and the area under the curve (AUC) is 0.977. The results show that this method effectively improves the classification performance of pulmonary nodules. The proposed method has advantages in the classification of benign and malignant pulmonary nodules, and it can effectively assist radiologists in pulmonary nodule classification.
Collapse
Affiliation(s)
- Zhitao Guo
- School of Electronic and Information Engineering, Hebei University of Technology, Tianjin, 300401, China.
| | - Jikai Yang
- School of Electronic and Information Engineering, Hebei University of Technology, Tianjin, 300401, China.
| | - Linlin Zhao
- School of Electronic and Information Engineering, Hebei University of Technology, Tianjin, 300401, China.
| | - Jinli Yuan
- School of Electronic and Information Engineering, Hebei University of Technology, Tianjin, 300401, China.
| | - Hengyong Yu
- Department of Electrical and Computer Engineering, University of Massachusetts Lowell, Lowell, MA, 01854, USA.
| |
Collapse
|
23
|
Qiao J, Fan Y, Zhang M, Fang K, Li D, Wang Z. Ensemble framework based on attributes and deep features for benign-malignant classification of lung nodule. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
24
|
Jin H, Yu C, Gong Z, Zheng R, Zhao Y, Fu Q. Machine learning techniques for pulmonary nodule computer-aided diagnosis using CT images: A systematic review. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
25
|
Sekeroglu K, Soysal ÖM. Multi-Perspective Hierarchical Deep-Fusion Learning Framework for Lung Nodule Classification. SENSORS (BASEL, SWITZERLAND) 2022; 22:8949. [PMID: 36433541 PMCID: PMC9697252 DOI: 10.3390/s22228949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
Lung cancer is the leading cancer type that causes mortality in both men and women. Computer-aided detection (CAD) and diagnosis systems can play a very important role for helping physicians with cancer treatments. This study proposes a hierarchical deep-fusion learning scheme in a CAD framework for the detection of nodules from computed tomography (CT) scans. In the proposed hierarchical approach, a decision is made at each level individually employing the decisions from the previous level. Further, individual decisions are computed for several perspectives of a volume of interest. This study explores three different approaches to obtain decisions in a hierarchical fashion. The first model utilizes raw images. The second model uses a single type of feature image having salient content. The last model employs multi-type feature images. All models learn the parameters by means of supervised learning. The proposed CAD frameworks are tested using lung CT scans from the LIDC/IDRI database. The experimental results showed that the proposed multi-perspective hierarchical fusion approach significantly improves the performance of the classification. The proposed hierarchical deep-fusion learning model achieved a sensitivity of 95% with only 0.4 fp/scan.
Collapse
Affiliation(s)
- Kazim Sekeroglu
- Department of Computer Science, Southeastern Louisiana University, Hammond, LA 70402, USA
| | - Ömer Muhammet Soysal
- Department of Computer Science, Southeastern Louisiana University, Hammond, LA 70402, USA
- School of Electrical Engineering and Computer Science, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
26
|
Artificial Intelligence in Lung Cancer Imaging: Unfolding the Future. Diagnostics (Basel) 2022; 12:diagnostics12112644. [PMID: 36359485 PMCID: PMC9689810 DOI: 10.3390/diagnostics12112644] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/26/2022] [Accepted: 10/29/2022] [Indexed: 11/30/2022] Open
Abstract
Lung cancer is one of the malignancies with higher morbidity and mortality. Imaging plays an essential role in each phase of lung cancer management, from detection to assessment of response to treatment. The development of imaging-based artificial intelligence (AI) models has the potential to play a key role in early detection and customized treatment planning. Computer-aided detection of lung nodules in screening programs has revolutionized the early detection of the disease. Moreover, the possibility to use AI approaches to identify patients at risk of developing lung cancer during their life can help a more targeted screening program. The combination of imaging features and clinical and laboratory data through AI models is giving promising results in the prediction of patients’ outcomes, response to specific therapies, and risk for toxic reaction development. In this review, we provide an overview of the main imaging AI-based tools in lung cancer imaging, including automated lesion detection, characterization, segmentation, prediction of outcome, and treatment response to provide radiologists and clinicians with the foundation for these applications in a clinical scenario.
Collapse
|
27
|
Jassim MM, Jaber MM. Systematic review for lung cancer detection and lung nodule classification: Taxonomy, challenges, and recommendation future works. JOURNAL OF INTELLIGENT SYSTEMS 2022. [DOI: 10.1515/jisys-2022-0062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Nowadays, lung cancer is one of the most dangerous diseases that require early diagnosis. Artificial intelligence has played an essential role in the medical field in general and in analyzing medical images and diagnosing diseases in particular, as it can reduce human errors that can occur with the medical expert when analyzing medical image. In this research study, we have done a systematic survey of the research published during the last 5 years in the diagnosis of lung cancer classification of lung nodules in 4 reliable databases (Science Direct, Scopus, web of science, and IEEE), and we selected 50 research paper using systematic literature review. The goal of this review work is to provide a concise overview of recent advancements in lung cancer diagnosis issues by machine learning and deep learning algorithms. This article summarizes the present state of knowledge on the subject. Addressing the findings offered in recent research publications gives the researchers a better grasp of the topic. We checked all the characteristics, such as challenges, recommendations for future work were analyzed in detail, and the published datasets and their source were presented to facilitate the researchers’ access to them and use it to develop the results achieved previously.
Collapse
Affiliation(s)
- Mustafa Mohammed Jassim
- Department of Computer Science, Informatics Institute for Postgraduate Studies (IIPS), Iraqi Commission for Computers and Informatics (ICCI) , Baghdad , Iraq
| | - Mustafa Musa Jaber
- Department of Medical Instruments Engineering Techniques, Dijlah University College , Baghdad , 10021 , Iraq
- Department of Medical Instruments Engineering Techniques, Al-Farahidi University , Baghdad , 10021 , Iraq
| |
Collapse
|
28
|
Tomassini S, Falcionelli N, Sernani P, Burattini L, Dragoni AF. Lung nodule diagnosis and cancer histology classification from computed tomography data by convolutional neural networks: A survey. Comput Biol Med 2022; 146:105691. [PMID: 35691714 DOI: 10.1016/j.compbiomed.2022.105691] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/26/2022] [Accepted: 05/31/2022] [Indexed: 11/30/2022]
Abstract
Lung cancer is among the deadliest cancers. Besides lung nodule classification and diagnosis, developing non-invasive systems to classify lung cancer histological types/subtypes may help clinicians to make targeted treatment decisions timely, having a positive impact on patients' comfort and survival rate. As convolutional neural networks have proven to be responsible for the significant improvement of the accuracy in lung cancer diagnosis, with this survey we intend to: show the contribution of convolutional neural networks not only in identifying malignant lung nodules but also in classifying lung cancer histological types/subtypes directly from computed tomography data; point out the strengths and weaknesses of slice-based and scan-based approaches employing convolutional neural networks; and highlight the challenges and prospective solutions to successfully apply convolutional neural networks for such classification tasks. To this aim, we conducted a comprehensive analysis of relevant Scopus-indexed studies involved in lung nodule diagnosis and cancer histology classification up to January 2022, dividing the investigation in convolutional neural network-based approaches fed with planar or volumetric computed tomography data. Despite the application of convolutional neural networks in lung nodule diagnosis and cancer histology classification is a valid strategy, some challenges raised, mainly including the lack of publicly-accessible annotated data, together with the lack of reproducibility and clinical interpretability. We believe that this survey will be helpful for future studies involved in lung nodule diagnosis and cancer histology classification prior to lung biopsy by means of convolutional neural networks.
Collapse
Affiliation(s)
- Selene Tomassini
- Department of Information Engineering, Engineering Faculty, Università Politecnica delle Marche, Ancona, Italy.
| | - Nicola Falcionelli
- Department of Information Engineering, Engineering Faculty, Università Politecnica delle Marche, Ancona, Italy.
| | - Paolo Sernani
- Department of Information Engineering, Engineering Faculty, Università Politecnica delle Marche, Ancona, Italy.
| | - Laura Burattini
- Department of Information Engineering, Engineering Faculty, Università Politecnica delle Marche, Ancona, Italy.
| | - Aldo Franco Dragoni
- Department of Information Engineering, Engineering Faculty, Università Politecnica delle Marche, Ancona, Italy.
| |
Collapse
|
29
|
Huang H, Wu R, Li Y, Peng C. Self-Supervised Transfer Learning Based on Domain Adaptation for Benign-Malignant Lung Nodule Classification on Thoracic CT. IEEE J Biomed Health Inform 2022; 26:3860-3871. [PMID: 35503850 DOI: 10.1109/jbhi.2022.3171851] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The spatial heterogeneity is an important indicator of the malignancy of lung nodules in lung cancer diagnosis. Compared with 2D nodule CT images, the 3D volumes with entire nodule objects hold richer discriminative information. However, for deep learning methods driven by massive data, effectively capturing the 3D discriminative features of nodules in limited labeled samples is a challenging task. Different from previous models that proposed transfer learning models in a 2D pattern or learning from scratch 3D models, we develop a self-supervised transfer learning based on domain adaptation (SSTL-DA) 3D CNN framework for benign-malignant lung nodule classification. At first, a data pre-processing strategy termed adaptive slice selection (ASS) is developed to eliminate the redundant noise of the input samples with lung nodules. Then, the self-supervised learning network is constructed to learn robust image representation from CT images. Finally, a transfer learning method based on domain adaptation is designed to obtain discriminant features for classification. The proposed SSTL-DA method has been assessed on the LIDC-IDRI benchmark dataset, and it obtains an accuracy of 91.07% and an AUC of 95.84%. These results demonstrate that the SSTL-DA model achieves quite a competitive classification performance compared with some state-of-the-art approaches.
Collapse
|
30
|
Silva F, Pereira T, Neves I, Morgado J, Freitas C, Malafaia M, Sousa J, Fonseca J, Negrão E, Flor de Lima B, Correia da Silva M, Madureira AJ, Ramos I, Costa JL, Hespanhol V, Cunha A, Oliveira HP. Towards Machine Learning-Aided Lung Cancer Clinical Routines: Approaches and Open Challenges. J Pers Med 2022; 12:480. [PMID: 35330479 PMCID: PMC8950137 DOI: 10.3390/jpm12030480] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/28/2022] [Accepted: 03/10/2022] [Indexed: 12/15/2022] Open
Abstract
Advancements in the development of computer-aided decision (CAD) systems for clinical routines provide unquestionable benefits in connecting human medical expertise with machine intelligence, to achieve better quality healthcare. Considering the large number of incidences and mortality numbers associated with lung cancer, there is a need for the most accurate clinical procedures; thus, the possibility of using artificial intelligence (AI) tools for decision support is becoming a closer reality. At any stage of the lung cancer clinical pathway, specific obstacles are identified and "motivate" the application of innovative AI solutions. This work provides a comprehensive review of the most recent research dedicated toward the development of CAD tools using computed tomography images for lung cancer-related tasks. We discuss the major challenges and provide critical perspectives on future directions. Although we focus on lung cancer in this review, we also provide a more clear definition of the path used to integrate AI in healthcare, emphasizing fundamental research points that are crucial for overcoming current barriers.
Collapse
Affiliation(s)
- Francisco Silva
- INESC TEC—Institute for Systems and Computer Engineering, Technology and Science, 4200-465 Porto, Portugal; (I.N.); (J.M.); (M.M.); (J.S.); (J.F.); (A.C.); (H.P.O.)
- FCUP—Faculty of Science, University of Porto, 4169-007 Porto, Portugal
| | - Tania Pereira
- INESC TEC—Institute for Systems and Computer Engineering, Technology and Science, 4200-465 Porto, Portugal; (I.N.); (J.M.); (M.M.); (J.S.); (J.F.); (A.C.); (H.P.O.)
| | - Inês Neves
- INESC TEC—Institute for Systems and Computer Engineering, Technology and Science, 4200-465 Porto, Portugal; (I.N.); (J.M.); (M.M.); (J.S.); (J.F.); (A.C.); (H.P.O.)
- ICBAS—Abel Salazar Biomedical Sciences Institute, University of Porto, 4050-313 Porto, Portugal
| | - Joana Morgado
- INESC TEC—Institute for Systems and Computer Engineering, Technology and Science, 4200-465 Porto, Portugal; (I.N.); (J.M.); (M.M.); (J.S.); (J.F.); (A.C.); (H.P.O.)
| | - Cláudia Freitas
- CHUSJ—Centro Hospitalar e Universitário de São João, 4200-319 Porto, Portugal; (C.F.); (E.N.); (B.F.d.L.); (M.C.d.S.); (A.J.M.); (I.R.); (V.H.)
- FMUP—Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
| | - Mafalda Malafaia
- INESC TEC—Institute for Systems and Computer Engineering, Technology and Science, 4200-465 Porto, Portugal; (I.N.); (J.M.); (M.M.); (J.S.); (J.F.); (A.C.); (H.P.O.)
- FEUP—Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| | - Joana Sousa
- INESC TEC—Institute for Systems and Computer Engineering, Technology and Science, 4200-465 Porto, Portugal; (I.N.); (J.M.); (M.M.); (J.S.); (J.F.); (A.C.); (H.P.O.)
| | - João Fonseca
- INESC TEC—Institute for Systems and Computer Engineering, Technology and Science, 4200-465 Porto, Portugal; (I.N.); (J.M.); (M.M.); (J.S.); (J.F.); (A.C.); (H.P.O.)
- FEUP—Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| | - Eduardo Negrão
- CHUSJ—Centro Hospitalar e Universitário de São João, 4200-319 Porto, Portugal; (C.F.); (E.N.); (B.F.d.L.); (M.C.d.S.); (A.J.M.); (I.R.); (V.H.)
| | - Beatriz Flor de Lima
- CHUSJ—Centro Hospitalar e Universitário de São João, 4200-319 Porto, Portugal; (C.F.); (E.N.); (B.F.d.L.); (M.C.d.S.); (A.J.M.); (I.R.); (V.H.)
| | - Miguel Correia da Silva
- CHUSJ—Centro Hospitalar e Universitário de São João, 4200-319 Porto, Portugal; (C.F.); (E.N.); (B.F.d.L.); (M.C.d.S.); (A.J.M.); (I.R.); (V.H.)
| | - António J. Madureira
- CHUSJ—Centro Hospitalar e Universitário de São João, 4200-319 Porto, Portugal; (C.F.); (E.N.); (B.F.d.L.); (M.C.d.S.); (A.J.M.); (I.R.); (V.H.)
- FMUP—Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
| | - Isabel Ramos
- CHUSJ—Centro Hospitalar e Universitário de São João, 4200-319 Porto, Portugal; (C.F.); (E.N.); (B.F.d.L.); (M.C.d.S.); (A.J.M.); (I.R.); (V.H.)
- FMUP—Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
| | - José Luis Costa
- FMUP—Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IPATIMUP—Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
| | - Venceslau Hespanhol
- CHUSJ—Centro Hospitalar e Universitário de São João, 4200-319 Porto, Portugal; (C.F.); (E.N.); (B.F.d.L.); (M.C.d.S.); (A.J.M.); (I.R.); (V.H.)
- FMUP—Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
| | - António Cunha
- INESC TEC—Institute for Systems and Computer Engineering, Technology and Science, 4200-465 Porto, Portugal; (I.N.); (J.M.); (M.M.); (J.S.); (J.F.); (A.C.); (H.P.O.)
- UTAD—University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal
| | - Hélder P. Oliveira
- INESC TEC—Institute for Systems and Computer Engineering, Technology and Science, 4200-465 Porto, Portugal; (I.N.); (J.M.); (M.M.); (J.S.); (J.F.); (A.C.); (H.P.O.)
- FCUP—Faculty of Science, University of Porto, 4169-007 Porto, Portugal
| |
Collapse
|
31
|
Deep Learning Applications in Computed Tomography Images for Pulmonary Nodule Detection and Diagnosis: A Review. Diagnostics (Basel) 2022; 12:diagnostics12020298. [PMID: 35204388 PMCID: PMC8871398 DOI: 10.3390/diagnostics12020298] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 12/26/2022] Open
Abstract
Lung cancer has one of the highest mortality rates of all cancers and poses a severe threat to people’s health. Therefore, diagnosing lung nodules at an early stage is crucial to improving patient survival rates. Numerous computer-aided diagnosis (CAD) systems have been developed to detect and classify such nodules in their early stages. Currently, CAD systems for pulmonary nodules comprise data acquisition, pre-processing, lung segmentation, nodule detection, false-positive reduction, segmentation, and classification. A number of review articles have considered various components of such systems, but this review focuses on segmentation and classification parts. Specifically, categorizing segmentation parts based on lung nodule type and network architectures, i.e., general neural network and multiview convolution neural network (CNN) architecture. Moreover, this work organizes related literature for classification of parts based on nodule or non-nodule and benign or malignant. The essential CT lung datasets and evaluation metrics used in the detection and diagnosis of lung nodules have been systematically summarized as well. Thus, this review provides a baseline understanding of the topic for interested readers.
Collapse
|
32
|
Xiao B, Sun H, Meng Y, Peng Y, Yang X, Chen S, Yan Z, Zheng J. Classification of microcalcification clusters in digital breast tomosynthesis using ensemble convolutional neural network. Biomed Eng Online 2021; 20:71. [PMID: 34320986 PMCID: PMC8317331 DOI: 10.1186/s12938-021-00908-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/15/2021] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND The classification of benign and malignant microcalcification clusters (MCs) is an important task for computer-aided diagnosis (CAD) of digital breast tomosynthesis (DBT) images. Influenced by imaging method, DBT has the characteristic of anisotropic resolution, in which the resolution of intra-slice and inter-slice is quite different. In addition, the sharpness of MCs in different slices of DBT is quite different, among which the clearest slice is called focus slice. These characteristics limit the performance of CAD algorithms based on standard 3D convolution neural network (CNN). METHODS To make full use of the characteristics of the DBT, we proposed a new ensemble CNN, which consists of the 2D ResNet34 and the anisotropic 3D ResNet to extract the 2D focus slice features and 3D contextual features of MCs, respectively. Moreover, the anisotropic 3D convolution is used to build 3D ResNet to avoid the influence of DBT anisotropy. RESULTS The proposed method was evaluated on 495 MCs in DBT images of 275 patients, which are collected from our collaborative hospital. The area under the curve (AUC) of receiver operating characteristic (ROC) and accuracy of classifying benign and malignant MCs using decision-level ensemble strategy were 0.8837 and 82.00%, which were significantly higher than the experimental results of 2D ResNet34 (AUC: 0.8264, ACC: 76.00%) and anisotropic 3D ResNet (AUC: 0.8455, ACC: 76.00%). Compared with the results of 3D features classification in the radiomics, the AUC of the deep learning method with decision-level ensemble strategy was improved by 0.0435, and the F1 score was improved from 79.37 to 85.71%. More importantly, the sensitivity increased from 78.13 to 84.38%, and the specificity increased from 66.67 to 77.78%, which effectively reduced the false positives of diagnosis CONCLUSION: The results fully prove that the ensemble CNN can effectively integrate 2D features and 3D features, improve the classification performance of benign and malignant MCs in DBT, and reduce the false positives.
Collapse
Affiliation(s)
- Bingbing Xiao
- Institute of Biomedical Engineering, School of Communication and Information Engineering, Shanghai University, Shanghai, China
| | - Haotian Sun
- University of Science and Technology of China, Hefei, China
- Department of Medical Imaging, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - You Meng
- Department of Breast Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
- Gusu School, Nanjing Medical University, Suzhou, China
| | - Yunsong Peng
- University of Science and Technology of China, Hefei, China
- Department of Medical Imaging, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Xiaodong Yang
- Department of Medical Imaging, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Shuangqing Chen
- Gusu School, Nanjing Medical University, Suzhou, China.
- Department of Radiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China.
| | - Zhuangzhi Yan
- Institute of Biomedical Engineering, School of Communication and Information Engineering, Shanghai University, Shanghai, China.
| | - Jian Zheng
- Department of Medical Imaging, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China.
| |
Collapse
|
33
|
Khorrami M, Bera K, Thawani R, Rajiah P, Gupta A, Fu P, Linden P, Pennell N, Jacono F, Gilkeson RC, Velcheti V, Madabhushi A. Distinguishing granulomas from adenocarcinomas by integrating stable and discriminating radiomic features on non-contrast computed tomography scans. Eur J Cancer 2021; 148:146-158. [PMID: 33743483 PMCID: PMC8087632 DOI: 10.1016/j.ejca.2021.02.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 01/28/2021] [Accepted: 02/02/2021] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To identify stable and discriminating radiomic features on non-contrast CT scans to develop more generalisable radiomic classifiers for distinguishing granulomas from adenocarcinomas. METHODS In total, 412 patients with adenocarcinomas and granulomas from three institutions were retrospectively included. Segmentations of the lung nodules were performed manually by an expert radiologist in a 2D axial view. Radiomic features were extracted from intra- and perinodular regions. A total of 145 patients were used as part of the training set (Str), whereas 205 patients were used as part of test set I (Ste1) and 62 patients were used as part of independent test set II (Ste2). To mitigate the variation of CT acquisition parameters, we defined 'stable' radiomic features as those for which the feature expression remains relatively unchanged between different sites, as assessed using a Wilcoxon rank-sum test. These stable features were used to develop more generalisable radiomic classifiers that were more resilient to variations in lung CT scans. Features were ranked based on two criteria, firstly based on discriminability (i.e. maximising AUC) alone and subsequently based on maximising both feature stability and discriminability. Different machine-learning classifiers (Linear discriminant analysis, Quadratic discriminant analysis, Support vector machines and random forest) were trained with features selected using the two different criteria and then compared on the two independent test sets for distinguishing granulomas from adenocarcinomas, in terms of area under the receiver operating characteristic curve. RESULTS In the test sets, classifiers constructed using the criteria involving maximising feature stability and discriminability simultaneously achieved higher AUC compared with the discriminating alone criteria (Ste1 [n = 205]: maximum AUCs of 0.85versus . 0.80; p-value = 0.047 and Ste2 [n = 62]: maximum AUCs of 0.87 versus. 0.79; p-value = 0.021). These differences held for features extracted from scans with <3 mm slice thickness (AUC = 0.88 versus. 0.80; p-value = 0.039, n = 100) and for the ≥3 mm cases (AUC = 0.81 versus. 0.76; p-value = 0.034, n = 105). In both experiments, shape and peritumoural texture features had a higher stability compared with intratumoural texture features. CONCLUSIONS Our study suggests that explicitly accounting for both stability and discriminability results in more generalisable radiomic classifiers to distinguish adenocarcinomas from granulomas on non-contrast CT scans. Our results also showed that peritumoural texture and shape features were less affected by the scanner parameters compared with intratumoural texture features; however, they were also less discriminating compared with intratumoural features.
Collapse
Affiliation(s)
- Mohammadhadi Khorrami
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Kaustav Bera
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Rajat Thawani
- OHSU Knight Cancer Institute, Oregon Health & Science University, Oregon, USA
| | - Prabhakar Rajiah
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Amit Gupta
- Department of Radiology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Pingfu Fu
- Department of Population and Quantitative Health Sciences, CWRU, Cleveland, OH, USA
| | - Philip Linden
- Thoracic and Esophageal Surgery Department, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Nathan Pennell
- Department of Hematology and Medical Oncology, Cleveland Clinic, Cleveland, OH, USA
| | - Frank Jacono
- Pulmonary Section, Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Robert C Gilkeson
- Department of Radiology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | | | - Anant Madabhushi
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA; Louis Stokes Cleveland Veterans Administration Medical Center, Cleveland, OH, USA.
| |
Collapse
|
34
|
Adaptive Aggregated Attention Network for Pulmonary Nodule Classification. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11020610] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Lung cancer has one of the highest cancer mortality rates in the world and threatens people’s health. Timely and accurate diagnosis can greatly reduce the number of deaths. Therefore, an accurate diagnosis system is extremely important. The existing methods have achieved significant performances on lung cancer diagnosis, but they are insufficient in fine-grained representations. In this paper, we propose a novel attentive method to differentiate malignant and benign pulmonary nodules. Firstly, the residual attention network (RAN) and squeeze-and-excitation network (SEN) were utilized to extract spatial and contextual features. Secondly, a novel multi-scale attention network (MSAN) was proposed to capture multi-scale attention features automatically, and the MSAN integrated the advantages of the spatial attention mechanism and contextual attention mechanism, which are very important for capturing the salient features of nodules. Finally, the gradient boosting machine (GBM) algorithm was used to differentiate malignant and benign nodules. We conducted a series of experiments on the Lung Image Database Consortium image collection (LIDC-IDRI) database, achieving an accuracy of 91.9%, a sensitivity of 91.3%, a false positive rate of 8.0%, and an F1-score of 91.0%. The experimental results demonstrate that our proposed method outperforms the state-of-the-art methods with respect to accuracy, false positive rate, and F1-Score.
Collapse
|