1
|
Lin Y, Yang Z, Chen J, Li M, Cai Z, Wang X, Zhai T, Lin Z. A contrast-enhanced CT radiomics-based model to identify candidates for deintensified chemoradiotherapy in locoregionally advanced nasopharyngeal carcinoma patients. Eur Radiol 2024; 34:1302-1313. [PMID: 37594526 DOI: 10.1007/s00330-023-09987-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 06/05/2023] [Accepted: 06/12/2023] [Indexed: 08/19/2023]
Abstract
OBJECTIVES To develop a contrast-enhanced CT (CECT) radiomics-based model to identify locoregionally advanced nasopharyngeal carcinoma (LA-NPC) patients who would benefit from deintensified chemoradiotherapy. METHODS LA-NPC patients who received low-dose concurrent cisplatin therapy (cumulative: 150 mg/m2), were randomly divided into training and validation groups. 107 radiomics features based on the primary nasopharyngeal tumor were extracted from each pre-treatment CECT scan. Through Cox regression analysis, a radiomics model and patients' corresponding radiomics scores were created with predictive independent radiomics features. T stage (T) and radiomics score (R) were compared as predictive factors. Combining the N stage (N), a clinical model (T + N), and a substitution model (R + N) were constructed. RESULTS Training and validation groups consisted of 66 and 33 patients, respectively. Three significant independent radiomics features (flatness, mean, and gray level non-uniformity in gray level dependence matrix (GLDM-GLN)) were found. The radiomics score showed better predictive ability than the T stage (concordance index (C-index): 0.67 vs. 0.61, AUC: 0.75 vs. 0.60). The R + N model had better predictive performance and more effective risk stratification than the T + N model (C-index: 0.77 vs. 0.68, AUC: 0.80 vs. 0.70). The R + N model identified a low-risk group as deintensified chemoradiotherapy candidates in which no patient developed progression within 3 years, with 5-year progression-free survival (PFS) and overall survival (OS) both 90.7% (hazard ratio (HR) = 4.132, p = 0.018). CONCLUSION Our radiomics-based model combining radiomics score and N stage can identify specific LA-NPC candidates for whom de-escalation therapy can be performed without compromising therapeutic efficacy. CLINICAL RELEVANCE STATEMENT Our study shows that the radiomics-based model (R + N) can accurately stratify patients into different risk groups, with satisfactory prognosis in the low-risk group when treated with low-dose concurrent chemotherapy, providing new options for individualized de-escalation strategies. KEY POINTS • A radiomics score, consisting of 3 predictive radiomics features (flatness, mean, and GLDM-GLN) integrated with the N stage, can identify specific LA-NPC populations for deintensified treatment. • In the selection of LA-NPC candidates for de-intensified treatment, radiomics score extracted from primary nasopharyngeal tumors based on CECT can be superior to traditional T stage classification as a predictor.
Collapse
Affiliation(s)
- Yinbing Lin
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou, 515000, Guangdong, China
- Shantou University Medical College, 22 Xinling Road, Shantou 515000, 515041, Guangdong, China
| | - Zhining Yang
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou, 515000, Guangdong, China
- Nasopharyngeal Carcinoma Research Center, Shantou University Medical College, Shantou University, 7 Raoping Road, Shantou, 515000, Guangdong, China
| | - Jiechen Chen
- Shantou University Medical College, 22 Xinling Road, Shantou 515000, 515041, Guangdong, China
| | - Mei Li
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou, 515000, Guangdong, China
- Nasopharyngeal Carcinoma Research Center, Shantou University Medical College, Shantou University, 7 Raoping Road, Shantou, 515000, Guangdong, China
| | - Zeman Cai
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou, 515000, Guangdong, China
- Nasopharyngeal Carcinoma Research Center, Shantou University Medical College, Shantou University, 7 Raoping Road, Shantou, 515000, Guangdong, China
| | - Xiao Wang
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou, 515000, Guangdong, China
- Shantou University Medical College, 22 Xinling Road, Shantou 515000, 515041, Guangdong, China
| | - Tiantian Zhai
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou, 515000, Guangdong, China.
- Nasopharyngeal Carcinoma Research Center, Shantou University Medical College, Shantou University, 7 Raoping Road, Shantou, 515000, Guangdong, China.
| | - Zhixiong Lin
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou, 515000, Guangdong, China.
- Nasopharyngeal Carcinoma Research Center, Shantou University Medical College, Shantou University, 7 Raoping Road, Shantou, 515000, Guangdong, China.
| |
Collapse
|
2
|
Ching JCF, Lam S, Lam CCH, Lui AOY, Kwong JCK, Lo AYH, Chan JWH, Cai J, Leung WS, Lee SWY. Integrating CT-based radiomic model with clinical features improves long-term prognostication in high-risk prostate cancer. Front Oncol 2023; 13:1060687. [PMID: 37205204 PMCID: PMC10186349 DOI: 10.3389/fonc.2023.1060687] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 04/10/2023] [Indexed: 05/21/2023] Open
Abstract
Objective High-risk prostate cancer (PCa) is often treated by prostate-only radiotherapy (PORT) owing to its favourable toxicity profile compared to whole-pelvic radiotherapy. Unfortunately, more than 50% patients still developed disease progression following PORT. Conventional clinical factors may be unable to identify at-risk subgroups in the era of precision medicine. In this study, we aimed to investigate the prognostic value of pre-treatment planning computed tomography (pCT)-based radiomic features and clinical attributes to predict 5-year progression-free survival (PFS) in high-risk PCa patients following PORT. Materials and methods A total of 176 biopsy-confirmed PCa patients who were treated at the Hong Kong Princess Margaret Hospital were retrospectively screened for eligibility. Clinical data and pCT of one hundred eligible high-risk PCa patients were analysed. Radiomic features were extracted from the gross-tumour-volume (GTV) with and without applying Laplacian-of-Gaussian (LoG) filter. The entire patient cohort was temporally stratified into a training and an independent validation cohort in a ratio of 3:1. Radiomics (R), clinical (C) and radiomic-clinical (RC) combined models were developed by Ridge regression through 5-fold cross-validation with 100 iterations on the training cohort. A model score was calculated for each model based on the included features. Model classification performance on 5-year PFS was evaluated in the independent validation cohort by average area-under-curve (AUC) of receiver-operating-characteristics (ROC) curve and precision-recall curve (PRC). Delong's test was used for model comparison. Results The RC combined model which contains 6 predictive features (tumour flatness, root-mean-square on fine LoG-filtered image, prostate-specific antigen serum concentration, Gleason score, Roach score and GTV volume) was the best-performing model (AUC = 0.797, 95%CI = 0.768-0.826), which significantly outperformed the R-model (AUC = 0.795, 95%CI = 0.774-0.816) and C-model (AUC = 0.625, 95%CI = 0.585-0.665) in the independent validation cohort. Besides, only the RC model score significantly classified patients in both cohorts into progression and progression-free groups regarding their 5-year PFS (p< 0.05). Conclusion Combining pCT-based radiomic and clinical attributes provided superior prognostication value regarding 5-year PFS in high-risk PCa patients following PORT. A large multi-centre study will potentially aid clinicians in implementing personalised treatment for this vulnerable subgroup in the future.
Collapse
Affiliation(s)
- Jerry C. F. Ching
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Saikit Lam
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
- Research Institute for Smart Aging, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Cody C. H. Lam
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Angie O. Y. Lui
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Joanne C. K. Kwong
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Anson Y. H. Lo
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Jason W. H. Chan
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Jing Cai
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - W. S. Leung
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
- *Correspondence: Shara W. Y. Lee, ; W. S. Leung,
| | - Shara W. Y. Lee
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
- *Correspondence: Shara W. Y. Lee, ; W. S. Leung,
| |
Collapse
|
3
|
Ge G, Zhang J. Feature selection methods and predictive models in CT lung cancer radiomics. J Appl Clin Med Phys 2023; 24:e13869. [PMID: 36527376 PMCID: PMC9860004 DOI: 10.1002/acm2.13869] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/31/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Radiomics is a technique that extracts quantitative features from medical images using data-characterization algorithms. Radiomic features can be used to identify tissue characteristics and radiologic phenotyping that is not observable by clinicians. A typical workflow for a radiomics study includes cohort selection, radiomic feature extraction, feature and predictive model selection, and model training and validation. While there has been increasing attention given to radiomic feature extraction, standardization, and reproducibility, currently, there is a lack of rigorous evaluation of feature selection methods and predictive models. Herein, we review the published radiomics investigations in CT lung cancer and provide an overview of the commonly used radiomic feature selection methods and predictive models. We also compare limitations of various methods in clinical applications and present sources of uncertainty associated with those methods. This review is expected to help raise awareness of the impact of radiomic feature and model selection methods on the integrity of radiomics studies.
Collapse
Affiliation(s)
- Gary Ge
- Department of Radiology, University of Kentucky, Lexington, Kentucky, USA
| | - Jie Zhang
- Department of Radiology, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
4
|
Chen W, Wang L, Hou Y, Li L, Chang L, Li Y, Xie K, Qiu L, Mao D, Li W, Xia Y. Combined Radiomics-Clinical Model to Predict Radiotherapy Response in Inoperable Stage III and IV Non-Small-Cell Lung Cancer. Technol Cancer Res Treat 2022; 21:15330338221142400. [PMID: 36476110 PMCID: PMC9742722 DOI: 10.1177/15330338221142400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Purpose: Radiotherapy is a promising treatment option for lung cancer, but patients' responses vary. The purpose of the study was to investigate the potential of radiomics and clinical signature for predicting the radiotherapy sensitivity and overall survival of inoperable stage III and IV non-small-cell lung cancer (NSCLC) patients. Materials: This retrospective study collected 104 inoperable stage III and IV NSCLC patients at the Yunnan Cancer Hospital from October 2016 to September 2020. They were divided into radiation-sensitive and non-sensitive groups. We used analysis of variance (ANOVA) to select features and support vector machine (SVM) to build the radiomic model. Furthermore, the logistic regression method was used to screen out clinically relevant predictive factors and construct the combined model of radiomics-clinical features. Finally, survival was estimated using the Kaplan-Meier method. Results: There were 40 patients in the radiation-sensitive group and 64 in the non-sensitive group. These patients were divided into training set (73 cases) and testing set (31 cases) according to the ratio of 7:3. Nine radiomics features and one clinical feature were significantly associated with radiotherapy sensitivity. Both the radiomics model and combined model have good predictive performance (the areas under the curve (AUC) values of the testing set were 0.864 (95% confidence interval [CI]: 0.683-0.996) and 0.868 (95% CI: 0.689-1.000), respectively). Only platelet level status was associated with overall survival. Conclusion: The combined model constructed based on radiomics and clinical features can effectively identify the radiation-sensitive population and provide valuable clinical information. Patients with higher platelet levels may have a poor prognosis.
Collapse
Affiliation(s)
- Wenrui Chen
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan, China
| | - Li Wang
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan, China
| | - Yu Hou
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan, China
| | - Lan Li
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan, China
| | - Li Chang
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan, China
| | - Yunfen Li
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan, China
| | - Kun Xie
- Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan, China
| | - Linbo Qiu
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan, China
| | - Dan Mao
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan, China
| | - Wenhui Li
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan, China,Wenhui Li, PhD, Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, 519 Kunzhou Rd., Kunming, Yunnan 650118, China.
| | - Yaoxiong Xia
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan, China
| |
Collapse
|
5
|
Fast and Deep Diagnosis Using Blood-Based ATR-FTIR Spectroscopy for Digestive Tract Cancers. Biomolecules 2022; 12:biom12121815. [PMID: 36551243 PMCID: PMC9775374 DOI: 10.3390/biom12121815] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/24/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) of liquid biofluids enables the probing of biomolecular markers for disease diagnosis, characterized as a time and cost-effective approach. It remains poorly understood for fast and deep diagnosis of digestive tract cancers (DTC) to detect abundant changes and select specific markers in a broad spectrum of molecular species. Here, we present a diagnostic protocol of DTC in which the in-situ blood-based ATR-FTIR spectroscopic data mining pathway was designed for the identification of DTC triages in 252 blood serum samples, divided into the following groups: liver cancer (LC), gastric cancer (GC), colorectal cancer (CC), and their different three stages respectively. The infrared molecular fingerprints (IMFs) of DTC were measured and used to build a 2-dimensional second derivative spectrum (2D-SD-IR) feature dataset for classification, including absorbance and wavenumber shifts of FTIR vibration peaks. By comparison, the Partial Least-Squares Discriminant Analysis (PLS-DA) and backpropagation (BP) neural networks are suitable to differentiate DTCs and pathological stages with a high sensitivity and specificity of 100% and averaged more than 95%. Furthermore, the measured IMF data was mutually validated via clinical blood biochemistry testing, which indicated that the proposed 2D-SD-IR-based machine learning protocol greatly improved DTC classification performance.
Collapse
|
6
|
Radiomic and Volumetric Measurements as Clinical Trial Endpoints—A Comprehensive Review. Cancers (Basel) 2022; 14:cancers14205076. [PMID: 36291865 PMCID: PMC9599928 DOI: 10.3390/cancers14205076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/23/2022] Open
Abstract
Simple Summary The extraction of quantitative data from standard-of-care imaging modalities offers opportunities to improve the relevance and salience of imaging biomarkers used in drug development. This review aims to identify the challenges and opportunities for discovering new imaging-based biomarkers based on radiomic and volumetric assessment in the single-site solid tumor sites: breast cancer, rectal cancer, lung cancer and glioblastoma. Developing approaches to harmonize three essential areas: segmentation, validation and data sharing may expedite regulatory approval and adoption of novel cancer imaging biomarkers. Abstract Clinical trials for oncology drug development have long relied on surrogate outcome biomarkers that assess changes in tumor burden to accelerate drug registration (i.e., Response Evaluation Criteria in Solid Tumors version 1.1 (RECIST v1.1) criteria). Drug-induced reduction in tumor size represents an imperfect surrogate marker for drug activity and yet a radiologically determined objective response rate is a widely used endpoint for Phase 2 trials. With the addition of therapies targeting complex biological systems such as immune system and DNA damage repair pathways, incorporation of integrative response and outcome biomarkers may add more predictive value. We performed a review of the relevant literature in four representative tumor types (breast cancer, rectal cancer, lung cancer and glioblastoma) to assess the preparedness of volumetric and radiomics metrics as clinical trial endpoints. We identified three key areas—segmentation, validation and data sharing strategies—where concerted efforts are required to enable progress of volumetric- and radiomics-based clinical trial endpoints for wider clinical implementation.
Collapse
|
7
|
Yang S, Wu N, Zhang L, Li M. Evaluation of the linear interpolation method in correcting the influence of slice thicknesses on radiomic feature values in solid pulmonary nodules: a prospective patient study. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:279. [PMID: 33708906 PMCID: PMC7944270 DOI: 10.21037/atm-20-2992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Background To investigate the influence of slice thickness on radiomic feature (RF) values in solid pulmonary nodules and evaluate the effect of a linear interpolation method in correcting the influence. Methods Thirty pulmonary nodules from 28 patients were selected prospectively with a thick-slice of 5 mm and a thin-slice of 1.25 mm on CT. A resampling method was used to normalize the voxel size of thick and thin slices CT images to 1×1×1 mm3 by linear interpolation. Lung nodules were segmented manually. A total of 396 radiomic features (RFs) were extracted from thick-slice and thin-slice images, together with the images resampled from thick (thick-r) and thin (thin-r) slices. The differences between the RF values were evaluated using a paired t-test. A comparison between groups was made using the Chi-squared test. Results Among the 396 RFs, 305 RFs showed an intraclass correlation coefficient ≥0.75 after test-retest analysis (including 22 histogram features, 20 geometry features, and 263 texture features). In the non-resampled data, 239 RF values (78.4%, 239/305) showed significant differences between thick and thin slice CT images. Resampling of thick images revealed that 202 RF values (66.2%, 202/305) showed significant differences between thick-r and thin slice CT images, showing a significant decrease in the number of different RF values when compared to non-resampled data (P<0.01). For the RF subgroups, only texture features showed a significant reduction in the number of different RF values after resampling (P<0.01). When both thick and thin slice images were resampled, the number of significantly different RF values between thick-r and thin-r images was increased to 247 (81.0%, 247/305), showing no significant difference when compared to non-resampled data (P=0.421). Conclusions Slice thickness demonstrated a considerable influence on RF values in solid pulmonary nodules, producing false results when CT images with different slice thicknesses were used. Linear interpolation of the resampling method was limited because of the relatively small correction effect.
Collapse
Affiliation(s)
- Shouxin Yang
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ning Wu
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,PET-CT Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Zhang
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Meng Li
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|