1
|
Park EH, O'Donnell T, Fritz J. Dual-Energy Computed Tomography Applications in Rheumatology. Rheum Dis Clin North Am 2025; 51:361-382. [PMID: 40246445 DOI: 10.1016/j.rdc.2025.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
Dual-energy computed tomography (DECT) has emerged as a transformative tool in the past decade. Initially employed in gout within the field of rheumatology to distinguish and quantify monosodium urate crystals through its dual-material discrimination capability, DECT has since broadened its clinical applications. It now encompasses various rheumatic diseases, employing advanced techniques such as bone marrow edema assessment, iodine mapping, and collagen-specific imaging. This review article aims to examine the unique characteristics of DECT, discuss its strengths and limitations, illustrate its applications for accurately evaluating various rheumatic diseases in clinical practice, and propose future directions for DECT in rheumatology.
Collapse
Affiliation(s)
- Eun Hae Park
- Division of Musculoskeletal Radiology, Department of Radiology, NYU Grossman School of Medicine, New York, USA; Department of Radiology, Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Geonjiro 20, Deokjin-gu, Jeonju, Jeollabukdo 54907, Republic of Korea
| | - Thomas O'Donnell
- CT Research Collaborations Siemens Healthineers, Malvern PA, USA
| | - Jan Fritz
- Division of Musculoskeletal Radiology, Department of Radiology, NYU Grossman School of Medicine, New York, USA.
| |
Collapse
|
2
|
Park EH, O'Donnell T, Fritz J. Dual-Energy Computed Tomography Applications in Rheumatology. Radiol Clin North Am 2024; 62:849-863. [PMID: 39059976 DOI: 10.1016/j.rcl.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Dual-energy computed tomography (DECT) has emerged as a transformative tool in the past decade. Initially employed in gout within the field of rheumatology to distinguish and quantify monosodium urate crystals through its dual-material discrimination capability, DECT has since broadened its clinical applications. It now encompasses various rheumatic diseases, employing advanced techniques such as bone marrow edema assessment, iodine mapping, and collagen-specific imaging. This review article aims to examine the unique characteristics of DECT, discuss its strengths and limitations, illustrate its applications for accurately evaluating various rheumatic diseases in clinical practice, and propose future directions for DECT in rheumatology.
Collapse
Affiliation(s)
- Eun Hae Park
- Division of Musculoskeletal Radiology, Department of Radiology, NYU Grossman School of Medicine, New York, USA; Department of Radiology, Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Geonjiro 20, Deokjin-gu, Jeonju, Jeollabukdo 54907, Republic of Korea
| | - Thomas O'Donnell
- CT Research Collaborations Siemens Healthineers, Malvern PA, USA
| | - Jan Fritz
- Division of Musculoskeletal Radiology, Department of Radiology, NYU Grossman School of Medicine, New York, USA.
| |
Collapse
|
3
|
Gao Y, Xie H, Chang CW, Peng J, Pan S, Qiu RL, Wang T, Ghavidel B, Roper J, Zhou J, Yang X. CT-based synthetic iodine map generation using conditional denoising diffusion probabilistic model. Med Phys 2024; 51:6246-6258. [PMID: 38889368 PMCID: PMC11489029 DOI: 10.1002/mp.17258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 04/17/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Iodine maps, derived from image-processing of contrast-enhanced dual-energy computed tomography (DECT) scans, highlight the differences in tissue iodine intake. It finds multiple applications in radiology, including vascular imaging, pulmonary evaluation, kidney assessment, and cancer diagnosis. In radiation oncology, it can contribute to designing more accurate and personalized treatment plans. However, DECT scanners are not commonly available in radiation therapy centers. Additionally, the use of iodine contrast agents is not suitable for all patients, especially those allergic to iodine agents, posing further limitations to the accessibility of this technology. PURPOSE The purpose of this work is to generate synthetic iodine map images from non-contrast single-energy CT (SECT) images using conditional denoising diffusion probabilistic model (DDPM). METHODS One-hundered twenty-six head-and-neck patients' images were retrospectively investigated in this work. Each patient underwent non-contrast SECT and contrast DECT scans. Ground truth iodine maps were generated from contrast DECT scans using commercial software syngo.via installed in the clinic. A conditional DDPM was implemented in this work to synthesize iodine maps. Three-fold cross-validation was conducted, with each iteration selecting the data from 42 patients as the test dataset and the remainder as the training dataset. Pixel-to-pixel generative adversarial network (GAN) and CycleGAN served as reference methods for evaluating the proposed DDPM method. RESULTS The accuracy of the proposed DDPM was evaluated using three quantitative metrics: mean absolute error (MAE) (1.039 ± 0.345 mg/mL), structural similarity index measure (SSIM) (0.89 ± 0.10) and peak signal-to-noise ratio (PSNR) (25.4 ± 3.5 db) respectively. Compared to the reference methods, the proposed technique showcased superior performance across the evaluated metrics, further validated by the paired two-tailed t-tests. CONCLUSION The proposed conditional DDPM framework has demonstrated the feasibility of generating synthetic iodine map images from non-contrast SECT images. This method presents a potential clinical application, which is providing accurate iodine contrast map in instances where only non-contrast SECT is accessible.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA
| | - Huiqiao Xie
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Chih-Wei Chang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA
| | - Junbo Peng
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA
| | - Shaoyan Pan
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA
| | - Richard L.J. Qiu
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA
| | - Tonghe Wang
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Beth Ghavidel
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA
| | - Justin Roper
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA
| | - Jun Zhou
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA
| | - Xiaofeng Yang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA
| |
Collapse
|
4
|
Gao Y, Qiu RLJ, Xie H, Chang CW, Wang T, Ghavidel B, Roper J, Zhou J, Yang X. CT-based synthetic contrast-enhanced dual-energy CT generation using conditional denoising diffusion probabilistic model. Phys Med Biol 2024; 69:165015. [PMID: 39053511 PMCID: PMC11294926 DOI: 10.1088/1361-6560/ad67a1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 06/26/2024] [Accepted: 07/25/2024] [Indexed: 07/27/2024]
Abstract
Objective.The study aimed to generate synthetic contrast-enhanced Dual-energy CT (CE-DECT) images from non-contrast single-energy CT (SECT) scans, addressing the limitations posed by the scarcity of DECT scanners and the health risks associated with iodinated contrast agents, particularly for high-risk patients.Approach.A conditional denoising diffusion probabilistic model (C-DDPM) was utilized to create synthetic images. Imaging data were collected from 130 head-and-neck (HN) cancer patients who had undergone both non-contrast SECT and CE-DECT scans.Main Results.The performance of the C-DDPM was evaluated using Mean Absolute Error (MAE), Structural Similarity Index (SSIM), and Peak Signal-to-Noise Ratio (PSNR). The results showed MAE values of 27.37±3.35 Hounsfield Units (HU) for high-energy CT (H-CT) and 24.57±3.35HU for low-energy CT (L-CT), SSIM values of 0.74±0.22 for H-CT and 0.78±0.22 for L-CT, and PSNR values of 18.51±4.55 decibels (dB) for H-CT and 18.91±4.55 dB for L-CT.Significance.The study demonstrates the efficacy of the deep learning model in producing high-quality synthetic CE-DECT images, which significantly benefits radiation therapy planning. This approach provides a valuable alternative imaging solution for facilities lacking DECT scanners and for patients who are unsuitable for iodine contrast imaging, thereby enhancing the reach and effectiveness of advanced imaging in cancer treatment planning.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, United States of America
| | - Richard L J Qiu
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, United States of America
| | - Huiqiao Xie
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| | - Chih-Wei Chang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, United States of America
| | - Tonghe Wang
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| | - Beth Ghavidel
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, United States of America
| | - Justin Roper
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, United States of America
| | - Jun Zhou
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, United States of America
| | - Xiaofeng Yang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, United States of America
| |
Collapse
|
5
|
Jiang C, Wang T, Pan Y, Ding Z, Shen D. Real-time diagnosis of intracerebral hemorrhage by generating dual-energy CT from single-energy CT. Med Image Anal 2024; 95:103194. [PMID: 38749304 DOI: 10.1016/j.media.2024.103194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 04/20/2024] [Accepted: 05/02/2024] [Indexed: 06/01/2024]
Abstract
Real-time diagnosis of intracerebral hemorrhage after thrombectomy is crucial for follow-up treatment. However, this is difficult to achieve with standard single-energy CT (SECT) due to similar CT values of blood and contrast agents under a single energy spectrum. In contrast, dual-energy CT (DECT) scanners employ two different energy spectra, which allows for real-time differentiation between hemorrhage and contrast extravasation based on energy-related attenuation characteristics. Unfortunately, DECT scanners are not as widely used as SECT scanners due to their high costs. To address this dilemma, in this paper, we generate pseudo DECT images from a SECT image for real-time diagnosis of hemorrhage. More specifically, we propose a SECT-to-DECT Transformer-based Generative Adversarial Network (SDTGAN), which is a 3D transformer-based multi-task learning framework equipped with a shared attention mechanism. In this way, SDTGAN can be guided to focus more on high-density areas (crucial for hemorrhage diagnosis) during the generation. Meanwhile, the introduced multi-task learning strategy and the shared attention mechanism also enable SDTGAN to model dependencies between interconnected generation tasks, improving generation performance while significantly reducing model parameters and computational complexity. In the experiments, we approximate real SECT images using mixed 120kV images from DECT data to address the issue of not being able to obtain the true paired DECT and SECT data. Extensive experiments demonstrate that SDTGAN can generate DECT images better than state-of-the-art methods. The code of our implementation is available at https://github.com/jiang-cw/SDTGAN.
Collapse
Affiliation(s)
- Caiwen Jiang
- School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, China
| | - Tianyu Wang
- Department of Radiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, China; Zhejiang University School of Medicine, Hangzhou, China
| | - Yongsheng Pan
- School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, China
| | - Zhongxiang Ding
- Department of Radiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, China.
| | - Dinggang Shen
- School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, China; Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China; Shanghai Clinical Research and Trial Center, Shanghai, 201210, China.
| |
Collapse
|
6
|
Maier J, Erath J, Sawall S, Fournié E, Stierstorfer K, Kachelrieß M. Raw data consistent deep learning-based field of view extension for dual-source dual-energy CT. Med Phys 2024; 51:1822-1831. [PMID: 37650780 DOI: 10.1002/mp.16684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/06/2023] [Accepted: 07/31/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Due to technical constraints, dual-source dual-energy CT scans may lack spectral information in the periphery of the patient. PURPOSE Here, we propose a deep learning-based iterative reconstruction to recover the missing spectral information outside the field of measurement (FOM) of the second source-detector pair. METHODS In today's Siemens dual-source CT systems, one source-detector pair (referred to as A) typically has a FOM of about 50 cm, while the FOM of the other pair (referred to as B) is limited by technical constraints to a diameter of about 35 cm. As a result, dual-energy applications are currently only available within the small FOM, limiting their use for larger patients. To derive a reconstruction at B's energy for the entire patient cross-section, we propose a deep learning-based iterative reconstruction. Starting with A's reconstruction as initial estimate, it employs a neural network in each iteration to refine the current estimate according to a raw data fidelity measure. Here, the corresponding mapping is trained using simulated chest, abdomen, and pelvis scans based on a data set containing 70 full body CT scans. Finally, the proposed approach is tested on simulated and measured dual-source dual-energy scans and compared against existing reference approaches. RESULTS For all test cases, the proposed approach was able to provide artifact-free CT reconstructions of B for the entire patient cross-section. Considering simulated data, the remaining error of the reconstructions is between 10 and 17 HU on average, which is about half as low as the reference approaches. A similar performance with an average error of 8 HU could be achieved for real phantom measurements. CONCLUSIONS The proposed approach is able to recover missing dual-energy information for patients exceeding the small 35 cm FOM of dual-source CT systems. Therefore, it potentially allows to extend dual-energy applications to the entire-patient cross section.
Collapse
Affiliation(s)
- Joscha Maier
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Julien Erath
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg University, Heidelberg, Germany
| | - Stefan Sawall
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg University, Heidelberg, Germany
| | | | | | - Marc Kachelrieß
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg University, Heidelberg, Germany
| |
Collapse
|
7
|
Yang M, Wohlfahrt P, Shen C, Bouchard H. Dual- and multi-energy CT for particle stopping-power estimation: current state, challenges and potential. Phys Med Biol 2023; 68. [PMID: 36595276 DOI: 10.1088/1361-6560/acabfa] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Range uncertainty has been a key factor preventing particle radiotherapy from reaching its full physical potential. One of the main contributing sources is the uncertainty in estimating particle stopping power (ρs) within patients. Currently, theρsdistribution in a patient is derived from a single-energy CT (SECT) scan acquired for treatment planning by converting CT number expressed in Hounsfield units (HU) of each voxel toρsusing a Hounsfield look-up table (HLUT), also known as the CT calibration curve. HU andρsshare a linear relationship with electron density but differ in their additional dependence on elemental composition through different physical properties, i.e. effective atomic number and mean excitation energy, respectively. Because of that, the HLUT approach is particularly sensitive to differences in elemental composition between real human tissues and tissue surrogates as well as tissue variations within and among individual patients. The use of dual-energy CT (DECT) forρsprediction has been shown to be effective in reducing the uncertainty inρsestimation compared to SECT. The acquisition of CT data over different x-ray spectra yields additional information on the material elemental composition. Recently, multi-energy CT (MECT) has been explored to deduct material-specific information with higher dimensionality, which has the potential to further improve the accuracy ofρsestimation. Even though various DECT and MECT methods have been proposed and evaluated over the years, these approaches are still only scarcely implemented in routine clinical practice. In this topical review, we aim at accelerating this translation process by providing: (1) a comprehensive review of the existing DECT/MECT methods forρsestimation with their respective strengths and weaknesses; (2) a general review of uncertainties associated with DECT/MECT methods; (3) a general review of different aspects related to clinical implementation of DECT/MECT methods; (4) other potential advanced DECT/MECT applications beyondρsestimation.
Collapse
Affiliation(s)
- Ming Yang
- The University of Texas MD Anderson Cancer Center, Department of Radiation Physics, 1515 Holcombe Blvd Houston, TX 77030, United States of America
| | - Patrick Wohlfahrt
- Massachusetts General Hospital and Harvard Medical School, Department of Radiation Oncology, Boston, MA 02115, United States of America
| | - Chenyang Shen
- University of Texas Southwestern Medical Center, Department of Radiation Oncology, 2280 Inwood Rd Dallas, TX 75235, United States of America
| | - Hugo Bouchard
- Département de physique, Université de Montréal, Complexe des sciences, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, Québec H2V0B3, Canada.,Centre de recherche du Centre hospitalier de l'Université de Montréal, 900 Rue Saint-Denis, Montréal, Québec, H2X 0A9, Canada.,Département de radio-oncologie, Centre hospitalier de l'Université de Montréal, 1051 Rue Sanguinet, Montréal, Québec H2X 3E4, Canada
| |
Collapse
|
8
|
Feasibility of Using Deep Learning to Generate Dual-Energy CT from 120-kV CT. J Med Biol Eng 2023. [DOI: 10.1007/s40846-023-00774-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
9
|
Mahmood U, Bates DDB, Erdi YE, Mannelli L, Corrias G, Kanan C. Deep Learning and Domain-Specific Knowledge to Segment the Liver from Synthetic Dual Energy CT Iodine Scans. Diagnostics (Basel) 2022; 12:672. [PMID: 35328225 PMCID: PMC8947702 DOI: 10.3390/diagnostics12030672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/24/2022] [Accepted: 03/03/2022] [Indexed: 11/23/2022] Open
Abstract
We map single energy CT (SECT) scans to synthetic dual-energy CT (synth-DECT) material density iodine (MDI) scans using deep learning (DL) and demonstrate their value for liver segmentation. A 2D pix2pix (P2P) network was trained on 100 abdominal DECT scans to infer synth-DECT MDI scans from SECT scans. The source and target domain were paired with DECT monochromatic 70 keV and MDI scans. The trained P2P algorithm then transformed 140 public SECT scans to synth-DECT scans. We split 131 scans into 60% train, 20% tune, and 20% held-out test to train four existing liver segmentation frameworks. The remaining nine low-dose SECT scans tested system generalization. Segmentation accuracy was measured with the dice coefficient (DSC). The DSC per slice was computed to identify sources of error. With synth-DECT (and SECT) scans, an average DSC score of 0.93±0.06 (0.89±0.01) and 0.89±0.01 (0.81±0.02) was achieved on the held-out and generalization test sets. Synth-DECT-trained systems required less data to perform as well as SECT-trained systems. Low DSC scores were primarily observed around the scan margin or due to non-liver tissue or distortions within ground-truth annotations. In general, training with synth-DECT scans resulted in improved segmentation performance with less data.
Collapse
Affiliation(s)
- Usman Mahmood
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - David D. B. Bates
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Yusuf E. Erdi
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | | | - Giuseppe Corrias
- Department of Radiology, University of Cagliari, 09124 Cagliari, Italy;
| | - Christopher Kanan
- Chester F. Carlson Center for Imaging Science, Rochester Institute of Technology, Rochester, NY 14623, USA;
| |
Collapse
|