1
|
Hou M, Wang J, Liu T, Li Z, Hounye AH, Liu X, Wang K, Chen S. A graph-optimized deep learning framework for recognition of Barrett’s esophagus and reflux esophagitis. MULTIMEDIA TOOLS AND APPLICATIONS 2024; 83:83747-83767. [DOI: 10.1007/s11042-024-18910-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 01/12/2024] [Accepted: 03/11/2024] [Indexed: 01/03/2025]
|
2
|
Yao M, Zhang G, Shao D, Ding S, Li L, Li H, Zhou C, Luo B, Lu L. Preparation of chitin/MXene/poly(L-arginine) composite aerogel spheres for specific adsorption of bilirubin. Int J Biol Macromol 2023:125140. [PMID: 37270125 DOI: 10.1016/j.ijbiomac.2023.125140] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/21/2023] [Accepted: 05/26/2023] [Indexed: 06/05/2023]
Abstract
Currently, hemoperfusion is clinically the most rapid and effective treatment for removing toxins from the blood. The core of hemoperfusion is the sorbent inside the hemoperfusion device. Due to the complex composition of the blood, adsorbents tend to adsorb substances such as proteins in the blood (non-specific adsorption) while adsorbing toxins. Hyperbilirubinemia is caused by excessive levels of bilirubin in the human blood, causing irreversible damage to the patient's brain and nervous system, and even leading to death. High adsorption and high biocompatibility adsorbents with specific bilirubin adsorption are urgently needed to treat hyperbilirubinemia. Herein, poly(L-arginine) (PLA) which can specifically adsorb bilirubin, was introduced into chitin/MXene (Ch/MX) composite aerogel spheres. Ch/MX/PLA prepared by supercritical CO2 technology had higher mechanical properties than Ch/MX and can withstand 50,000 times its own weight. The in vitro simulated hemoperfusion test showed that the adsorption capacity of Ch/MX/PLA was as high as 596.31 mg/g, which was 15.38 % higher than that of Ch/MX. Binary and ternary competitive adsorption tests showed that Ch/MX/PLA also had good adsorption capacity in the presence of a variety of interfering molecules. In addition, hemolysis rate testing and CCK-8 testing confirmed that Ch/MX/PLA had better biocompatibility and hemocompatibility. Ch/MX/PLA can meet the required properties of clinical hemoperfusion sorbents and has the ability to produce mass production. It has good application potential in the clinical treatment of hyperbilirubinemia.
Collapse
Affiliation(s)
- Mengru Yao
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Guiyin Zhang
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Danchun Shao
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Shan Ding
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, China
| | - Lihua Li
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, China
| | - Hong Li
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, China
| | - Changren Zhou
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, China
| | - Binghong Luo
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, China
| | - Lu Lu
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, China.
| |
Collapse
|