1
|
House C, Huang Z, Shankar KN, Young SJ, Roberts ME, Diamond SL, Tomaiuolo M, Stalker TJ, Lu L, Sinno T. From imaging to computational domains for physics-driven molecular biology simulations: Hindered diffusion in platelet masses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.06.636817. [PMID: 39975354 PMCID: PMC11839050 DOI: 10.1101/2025.02.06.636817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
When formed in vivo, murine hemostatic thrombi exhibit a heterogeneous architecture comprised of distinct regions of densely and sparsely packed platelets. In this study, we utilize high-resolution electron microscopy alongside machine learning and physics-based simulations to investigate how such clot microstructure impacts molecular diffusivity. We used Serial Block Face - Scanning Electron Microscopy (SBF-SEM) to image select volumes of hemostatic masses formed in a mouse jugular vein, producing large stacks of high-resolution 2D images. Images were segmented using machine learning software (Cellpose), whose training was augmented by manually segmented images. The segmented images were then utilized as a computational domain for Lattice Kinetic Monte-Carlo (LKMC) simulations. This process constitutes a computational pipeline that combines purely data-derived biological domains with physics-driven simulations to estimate how molecular movement is hindered in a hemostatic platelet mass. Using our pipeline, we estimated that the hindered diffusion rates of a globular protein range from 2% to 40% of the unhindered rate, with denser packing regions lending to lower molecular diffusivity. These data suggest that coagulation reactions rates, thrombin generation and activity, as well as platelet releasate activity may be drastically impacted by the internal geometry of a hemostatic thrombus.
Collapse
Affiliation(s)
- Catherine House
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Ziyi Huang
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Kaushik N. Shankar
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Sandra J. Young
- Independent Researcher, Philadelphia, Pennsylvania, United States of America
| | - Meghan E. Roberts
- Cardeza Foundation for Hematological Research, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Scott L. Diamond
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Maurizio Tomaiuolo
- Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Timothy J. Stalker
- Cardeza Foundation for Hematological Research, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Lu Lu
- Department of Statistics and Data Science, Yale University, New Haven, Connecticut, United States of America
| | - Talid Sinno
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
2
|
Gowthamy J, Ramesh SS. Kookaburra Optimization Algorithm and Feature Aggregated Region based Differential network for Colon Cancer Detection from Histopathological Images. 2024 8TH INTERNATIONAL CONFERENCE ON I-SMAC (IOT IN SOCIAL, MOBILE, ANALYTICS AND CLOUD) (I-SMAC) 2024:1896-1904. [DOI: 10.1109/i-smac61858.2024.10714617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Affiliation(s)
- J. Gowthamy
- RM Institute of Science and Technology Amapuram,Department of Computer Science and Engineering,Chennai,India
| | - S.S. Subashka Ramesh
- SRM Institute of Science and Technology Ramapuram,Department of Computer Science and Engineering,Chennai,India
| |
Collapse
|
3
|
Parvaiz A, Nasir ES, Fraz MM. From Pixels to Prognosis: A Survey on AI-Driven Cancer Patient Survival Prediction Using Digital Histology Images. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024; 37:1728-1751. [PMID: 38429563 PMCID: PMC11300721 DOI: 10.1007/s10278-024-01049-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/30/2023] [Accepted: 12/20/2023] [Indexed: 03/03/2024]
Abstract
Survival analysis is an integral part of medical statistics that is extensively utilized to establish prognostic indices for mortality or disease recurrence, assess treatment efficacy, and tailor effective treatment plans. The identification of prognostic biomarkers capable of predicting patient survival is a primary objective in the field of cancer research. With the recent integration of digital histology images into routine clinical practice, a plethora of Artificial Intelligence (AI)-based methods for digital pathology has emerged in scholarly literature, facilitating patient survival prediction. These methods have demonstrated remarkable proficiency in analyzing and interpreting whole slide images, yielding results comparable to those of expert pathologists. The complexity of AI-driven techniques is magnified by the distinctive characteristics of digital histology images, including their gigapixel size and diverse tissue appearances. Consequently, advanced patch-based methods are employed to effectively extract features that correlate with patient survival. These computational methods significantly enhance survival prediction accuracy and augment prognostic capabilities in cancer patients. The review discusses the methodologies employed in the literature, their performance metrics, ongoing challenges, and potential solutions for future advancements. This paper explains survival analysis and feature extraction methods for analyzing cancer patients. It also compiles essential acronyms related to cancer precision medicine. Furthermore, it is noteworthy that this is the inaugural review paper in the field. The target audience for this interdisciplinary review comprises AI practitioners, medical statisticians, and progressive oncologists who are enthusiastic about translating AI-driven solutions into clinical practice. We expect this comprehensive review article to guide future research directions in the field of cancer research.
Collapse
Affiliation(s)
- Arshi Parvaiz
- National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Esha Sadia Nasir
- National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | | |
Collapse
|
4
|
Uddin AH, Chen YL, Akter MR, Ku CS, Yang J, Por LY. Colon and lung cancer classification from multi-modal images using resilient and efficient neural network architectures. Heliyon 2024; 10:e30625. [PMID: 38742084 PMCID: PMC11089372 DOI: 10.1016/j.heliyon.2024.e30625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/02/2024] [Accepted: 04/30/2024] [Indexed: 05/16/2024] Open
Abstract
Automatic classification of colon and lung cancer images is crucial for early detection and accurate diagnostics. However, there is room for improvement to enhance accuracy, ensuring better diagnostic precision. This study introduces two novel dense architectures (D1 and D2) and emphasizes their effectiveness in classifying colon and lung cancer from diverse images. It also highlights their resilience, efficiency, and superior performance across multiple datasets. These architectures were tested on various types of datasets, including NCT-CRC-HE-100K (set of 100,000 non-overlapping image patches from hematoxylin and eosin (H&E) stained histological images of human colorectal cancer (CRC) and normal tissue), CRC-VAL-HE-7K (set of 7180 image patches from N = 50 patients with colorectal adenocarcinoma, no overlap with patients in NCT-CRC-HE-100K), LC25000 (Lung and Colon Cancer Histopathological Image), and IQ-OTHNCCD (Iraq-Oncology Teaching Hospital/National Center for Cancer Diseases), showcasing their effectiveness in classifying colon and lung cancers from histopathological and Computed Tomography (CT) scan images. This underscores the multi-modal image classification capability of the proposed models. Moreover, the study addresses imbalanced datasets, particularly in CRC-VAL-HE-7K and IQ-OTHNCCD, with a specific focus on model resilience and robustness. To assess overall performance, the study conducted experiments in different scenarios. The D1 model achieved an impressive 99.80 % accuracy on the NCT-CRC-HE-100K dataset, with a Jaccard Index (J) of 0.8371, a Matthew's Correlation Coefficient (MCC) of 0.9073, a Cohen's Kappa (Kp) of 0.9057, and a Critical Success Index (CSI) of 0.8213. When subjected to 10-fold cross-validation on LC25000, the D1 model averaged (avg) 99.96 % accuracy (avg J, MCC, Kp, and CSI of 0.9993, 0.9987, 0.9853, and 0.9990), surpassing recent reported performances. Furthermore, the ensemble of D1 and D2 reached 93 % accuracy (J, MCC, Kp, and CSI of 0.7556, 0.8839, 0.8796, and 0.7140) on the IQ-OTHNCCD dataset, exceeding recent benchmarks and aligning with other reported results. Efficiency evaluations were conducted in various scenarios. For instance, training on only 10 % of LC25000 resulted in high accuracy rates of 99.19 % (J, MCC, Kp, and CSI of 0.9840, 0.9898, 0.9898, and 0.9837) (D1) and 99.30 % (J, MCC, Kp, and CSI of 0.9863, 0.9913, 0.9913, and 0.9861) (D2). In NCT-CRC-HE-100K, D2 achieved an impressive 99.53 % accuracy (J, MCC, Kp, and CSI of 0.9906, 0.9946, 0.9946, and 0.9906) with training on only 30 % of the dataset and testing on the remaining 70 %. When tested on CRC-VAL-HE-7K, D1 and D2 achieved 95 % accuracy (J, MCC, Kp, and CSI of 0.8845, 0.9455, 0.9452, and 0.8745) and 96 % accuracy (J, MCC, Kp, and CSI of 0.8926, 0.9504, 0.9503, and 0.8798), respectively, outperforming previously reported results and aligning closely with others. Lastly, training D2 on just 10 % of NCT-CRC-HE-100K and testing on CRC-VAL-HE-7K resulted in significant outperformance of InceptionV3, Xception, and DenseNet201 benchmarks, achieving an accuracy rate of 82.98 % (J, MCC, Kp, and CSI of 0.7227, 0.8095, 0.8081, and 0.6671). Finally, using explainable AI algorithms such as Grad-CAM, Grad-CAM++, Score-CAM, and Faster Score-CAM, along with their emphasized versions, we visualized the features from the last layer of DenseNet201 for histopathological as well as CT-scan image samples. The proposed dense models, with their multi-modality, robustness, and efficiency in cancer image classification, hold the promise of significant advancements in medical diagnostics. They have the potential to revolutionize early cancer detection and improve healthcare accessibility worldwide.
Collapse
Affiliation(s)
- A. Hasib Uddin
- Department of Computer Science and Engineering, Khwaja Yunus Ali University, Enayetpur, Chouhali, Sirajganj, 6751, Bangladesh
| | - Yen-Lin Chen
- Department of Computer Science and Information Engineering, National Taipei University of Technology, Taipei, 106344, Taiwan
| | - Miss Rokeya Akter
- Department of Computer Science and Engineering, Khwaja Yunus Ali University, Enayetpur, Chouhali, Sirajganj, 6751, Bangladesh
| | - Chin Soon Ku
- Department of Computer Science, Universiti Tunku Abdul Rahman, Kampar, 31900, Malaysia
| | - Jing Yang
- Department of Computer System and Technology, Faculty of Computer Science and Information Technology, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Lip Yee Por
- Department of Computer System and Technology, Faculty of Computer Science and Information Technology, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
5
|
Leo M, Carcagnì P, Signore L, Corcione F, Benincasa G, Laukkanen MO, Distante C. Convolutional Neural Networks in the Diagnosis of Colon Adenocarcinoma. AI 2024; 5:324-341. [DOI: 10.3390/ai5010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
Colorectal cancer is one of the most lethal cancers because of late diagnosis and challenges in the selection of therapy options. The histopathological diagnosis of colon adenocarcinoma is hindered by poor reproducibility and a lack of standard examination protocols required for appropriate treatment decisions. In the current study, using state-of-the-art approaches on benchmark datasets, we analyzed different architectures and ensembling strategies to develop the most efficient network combinations to improve binary and ternary classification. We propose an innovative two-stage pipeline approach to diagnose colon adenocarcinoma grading from histological images in a similar manner to a pathologist. The glandular regions were first segmented by a transformer architecture with subsequent classification using a convolutional neural network (CNN) ensemble, which markedly improved the learning efficiency and shortened the learning time. Moreover, we prepared and published a dataset for clinical validation of the developed artificial neural network, which suggested the discovery of novel histological phenotypic alterations in adenocarcinoma sections that could have prognostic value. Therefore, AI could markedly improve the reproducibility, efficiency, and accuracy of colon cancer diagnosis, which are required for precision medicine to personalize the treatment of cancer patients.
Collapse
Affiliation(s)
- Marco Leo
- Institute of Applied Sciences and Intelligent Systems (ISASI), National Research Council (CNR) of Italy, 73100 Lecce, Italy
| | - Pierluigi Carcagnì
- Institute of Applied Sciences and Intelligent Systems (ISASI), National Research Council (CNR) of Italy, 73100 Lecce, Italy
| | - Luca Signore
- Dipartimento di Ingegneria per L’Innovazione, Università del Salento, 73100 Lecce, Italy
| | | | | | - Mikko O. Laukkanen
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy
| | - Cosimo Distante
- Institute of Applied Sciences and Intelligent Systems (ISASI), National Research Council (CNR) of Italy, 73100 Lecce, Italy
- Dipartimento di Ingegneria per L’Innovazione, Università del Salento, 73100 Lecce, Italy
| |
Collapse
|
6
|
Chlorogiannis DD, Verras GI, Tzelepi V, Chlorogiannis A, Apostolos A, Kotis K, Anagnostopoulos CN, Antzoulas A, Davakis S, Vailas M, Schizas D, Mulita F. Tissue classification and diagnosis of colorectal cancer histopathology images using deep learning algorithms. Is the time ripe for clinical practice implementation? PRZEGLAD GASTROENTEROLOGICZNY 2023; 18:353-367. [PMID: 38572457 PMCID: PMC10985751 DOI: 10.5114/pg.2023.130337] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/20/2023] [Indexed: 04/05/2024]
Abstract
Colorectal cancer is one of the most prevalent types of cancer, with histopathologic examination of biopsied tissue samples remaining the gold standard for diagnosis. During the past years, artificial intelligence (AI) has steadily found its way into the field of medicine and pathology, especially with the introduction of whole slide imaging (WSI). The main outcome of interest was the composite balanced accuracy (ACC) as well as the F1 score. The average reported ACC from the collected studies was 95.8 ±3.8%. Reported F1 scores reached as high as 0.975, with an average of 89.7 ±9.8%, indicating that existing deep learning algorithms can achieve in silico distinction between malignant and benign. Overall, the available state-of-the-art algorithms are non-inferior to pathologists for image analysis and classification tasks. However, due to their inherent uniqueness in their training and lack of widely accepted external validation datasets, their generalization potential is still limited.
Collapse
Affiliation(s)
| | | | - Vasiliki Tzelepi
- Department of Pathology, School of Medicine, University of Patras, Patras, Greece
| | | | - Anastasios Apostolos
- First Department of Cardiology, Hippokration Hospital, University of Athens, Athens, Greece
| | - Konstantinos Kotis
- Intelligent Systems Lab, Department of Cultural Technology and Communication, University of the Aegean, Mytilene, Greece
| | | | - Andreas Antzoulas
- Department of Surgery, General University Hospital of Patras, Patras, Greece
| | - Spyridon Davakis
- Upper Gastrointestinal and General Surgery Unit, First Department of Surgery, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| | - Michail Vailas
- Upper Gastrointestinal and General Surgery Unit, First Department of Surgery, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| | - Dimitrios Schizas
- Upper Gastrointestinal and General Surgery Unit, First Department of Surgery, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| | - Francesk Mulita
- Department of Surgery, General University Hospital of Patras, Patras, Greece
| |
Collapse
|